
0-AOg9 498 COLORADO UNIV AT BOULDER DEPT OF COMPUTER SCIENCE F/6 9/2
SAlESAL REPORT AND USER MANUAL. (U)
FEB Al N A SALLUCCI DAA629-80-C-OO94

UNCLASSIFIED CU-CS198-81 ARO-17124.4-M -

IA.'1 11 *~ 8 12.5

1111.511111 11112.
11111 iii 11112I.0

MICROCOPY RESOLUTION ES CAR

. w.-

J N'

00 04

N 17

, vi

-2,-:i;-.

.~ :'4V

LEVL

SAM/SAL Report

and User Manual

Michael A. Gallucci

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

CU-CS-198-81 February, 1981

This material is based upon work supported
by the National Science Foundation grants
#MCS80000l7 and #MCS77-02194, Department of
Energy grant #DE-ACO2-80ER10718, and Army Re-
search office grant #DAAG 29-80-C-0094.

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

SECURITY CLASSIFICATION OF THIS PAGE (Whmea bet "EieF_

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEF9RE COMPLETIVG FORM

1 253OVT ACCESSION CAO. 01ENTS CATALOG NUMBER

.TITLE (ad SP"/_ -SI- V 04- -.......... I-- 7 ... '(9
SWIM. m Report and User Manualj-/

-7- =1, ;rQlIG. REPORT NUMI[-IR

7. AU T1"I CONTRACT OR GRANT NUMIER(s)

. PlERFORMING ORGANIZATION NAME AND ADRESS 4- " AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME ANDOADDRESS 1 Fff~lT

U. L. Army Research)ffice r

Post Office Box 12211 - "000e.p
Research 'ii'rngle Park, NC 27709 85

14. MONITORING AGEN A A SS(if different from Controlling Office) IS. SECURITY CLASS. (of this rs..g" l

Unclassified

ISa. DECLASSIICTO 22UN IN
SCHEDULE NA

16. DISTRIBUTION STATEMENT (of this fteP po * 7 A

Apprnved for public release; distribution unlinited.

17. DISTRISUTION STATEMENT (of the 4bet1ecl enteed in Block 20, if different from Report)

NA

I. SUPPLEMENTARY NOTES

The t'indi.ngs in this report are not to be construed as an official
Department of the Army pesition, unless so designated by other authorized
document.;.

IS KEY WORDS (Continue on tvle rse side if necessity aid Identify by block number)

attributed grammars, language syntax, language semantics,

programming languages, annotated flowgraphs, static program analysis

20. ABSTRACT (Continue an reverse side If necessary aid Identify by block .wmber)

----,,>This document describes the SAN/SAL system implemented t-the4 "emsity.

! -o-a during 1980. SAM is a Static Analysis Machine with a Static Analysis
Language, SAL. The main purpose of SANISAL is to specify arbitrary programming
languages so that when programs in the specified language are run through the
SAM/SAL system, an annotated flowgraph representation of the program is generate

DD KOITION O' 1 NOVel Is OBSOLETE Unclassified
SCU*ITv CLASSIFICATION OF THIS PAGrim .M -e

THE FINDINGS IN THIS REPORT ARE NOT TO BE
CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE
ARMY POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

Any opinions, findings, and conclusions or
recommendations expressed in this publica-
tion are those of the author and do not
necessarily reflect the views of the Na-
tional Science Foundation.

Accession For

N-iTI5- __ ;
DTIC T'B

JI!t t :/. ..

AvalalbliitY Codes
Av-,eii. and/or

Dio Special

-9

Abstract

This document describes the SAM/SAL system implemented
at the University of Colorado dur-ing 1980. SAM is a Static

Analysis Machine with a Static Analysis Language, SAL. The
main purpose of SAM/SAL is to specify arbitrary programming
languages so that when programs in the specified language

are run through the SAM/SAL system, an annotated flowgraph
representation of the program is generated.

It
II

Table of Contents

1. The SAM/SAL System 1
1.1 Introduction 1
1. 1. 1 Purpose 1
1.1.2 Motivation 3.................................3
1. 2 Design Requirements......................... 3

1.3 Syntax Notation 4
1.4 Language Outline 5

2. Lexical Elements 6
2.1 Characters 6
2.2 Comments 6
2.3 Lexical Units 7
2.3.1 Names 7
2.3.2 Numbers 8
2.3.3 Literals 9
2.3.4 Delimiters 9
2.3.5 Lexical-Unit Restrictions 10
2.4 Spaces 10
2.5 Reserved Words 10

3. Preamble 11
3.1 Scanner Specification 11
3.2 Data Structure Control 12
3 . 2.1 MAXSETS 12

3.2.2 MAXSETSIZE 13
3.2.3 MAXDPNODES 13
3.2.4 MAXEDGES 13
3.2.5 MAXPARSENODES 13
3.2.6 MAXSYM 13

3.2.7 MAXCHAR 13
3.2.8 MAXATTBLCK 14
3 . 2 . 9 MAXPACKET o ... 14
3.3 Grammar Output Control 14

4. Declarations 16
4.1 Object Class Declarations 16
4.2 Actions 18
4.3 Flowgraph Node Types 18
4.4 Other Declarations 19

5 Language Specifications 20
5.1 Grammar Attributes 20
5.1.1 Grammar Attribute Part : Syntax 20
5.1.2 Grammar Attribute Part : Semantics 21
5.1.2.1 Primitive Grammar Variables 21
5.1.2.2 Type Restrictions 22
5.2 Language Rules 23

Table of Contents i

ii. Table of Contents

5. 2. 1 Syntax Rules 23
5.2.1.1 Syntax Rule Syntax............................ 24
5.2.1.2 Syntax Rule / Scanner Interface.......... 24
5.2.1.3 Syntax Rule Restrictions...................... 25
5.2.2 Semantic Rules.........................25
5.2.2.1 Evaluation Order of Semantic Rules........26
5.2.2.1.1 Interphase Ordering........................... 26
5.2.2.1.2 Intraphase Ordering........................... 27
5.2.2.1.3 Evaluation Order Restrictions 27
5.2.2.2 Semantic Rule Syntax.......................... 28
5.2.2.3 Semantic Rule Semantics....................... 29

6. Procedural Specifications..................... 32

References.................................... 34

A. Using SAM/SAL on the CU CDC Cyber..............35
A-1 Compiling a SAL Program, S.................... 35
A-2 Generating the Evaluators..................... 36
A-2.1 Parser Generation............................. 36
A-2.2 Semantic Evaluator Generation..................38
A.3 Using the Evaluators..................... 38
A .3.1 Using the Parser 38
A-3.2 Using the Semantic Evaluator 39
A .4 Fancy Display................................. 39

B. The Standard Environment................. 40
B .1 Standard Types 40
B .1.1 Set Types............................... 40
B .1.2 Symbol Ty'pes 40
B-1.3 Symbol Attribute Types 40
B.1.4 object Class Types............................ 40
B .1.5 Packet Types 41
B.1.6 Parameter Building Types 41
B .1.7 Callgraph Types........................... . .. 41
B. 1..8 Parse-Tree Types............ 41
B .1.9 Other Types....................41
B.2 StnadPoceduresFunctions..................41
B-.2 .1 Set Routines........................ 41
B-.2 .2 Symbol Routines......................... 44
B-2.3 Symbol Attribute Routines..................... 46
B-2.4 Object-asouins 46
B-*2.5 Packet Routines 47
B.2.5.1 Use-Table Routines................. 47
B.2.5.2 Flowgraph Routines...................... 49
B.2.5.3 Expression-Tree Routines 51
B.2.6 Parameter Building Routines *.... 52
B-2.7 Caligraph Routines 53
B.2.8 Parse-Tree Routines......................... 55
B .2.9 Other Routines 6 55

C. Output Tables Format 0.... 56
C.1 Data Structure Representations 56

......... *

Table of Contents i

C-2 File Format................................... 59

D. SAM/SAL System Sample Program................ 63
13.1 TURINGOL: A SAL Program....................... 64
D3.2 Sample TURINGOL Program....................... 77
D3.3 Output Report for Sample Program..............78

t1D.4 Tables File for Sample Program.................79
D.5 User-Readable Report of Tables File............82
D3.6 Graphic Display of Tables File............... 85

Figures

Figure 1.1 SAM/SAL System................................ 2

Figure C.1 Caligraph Node Structure..................... 56
Figure C.2 Action Packet Structure...................... 56
Figure C.3 Fp-Node Structure............................ 56
Figure C.4 Flowgraph Node Structure..................... 57
Figure C.5 Expression-Tree Node Structure................57
Figure C.6 Use-Table Node Structure..................... 58

iv Figures

* - -
, - - r *- - *•*

CHAPTER 1

The SAM/SAL System

1.1. Introduction

1.1.1. Purpose

This document describes the SAM/SAL system implemented
at the University of Colorado during 1980. SAM, an acronym
for Static Analysis Machine, is the current name given to
the whole system. SAL, an acronym for Static Analysis
Language, is the specification language provided by SAM
through which most of SAM's descriptive capabilities are
manifested. Since SAL is such an integral part of the
overall system, the system will often be referred to as
SAM/SAL.

The main purpose of SAM/SAL is to provide a capability
for specifiying arbitrary programming languages. A specifi-
cation is to be aimed at generating annotated flowgraphs for
programs written in the specified language. An annotation
is regarded as a defined action occurring to a set of
defined objects. As an example, in a specification of the
language PASCAL, the user might want the PASCAL statement

X := Y+Z

to generate a single flowgraph node n which is annotated
with the action REFERENCE to the set of objects [Y,Z) and
DEFINE to the set of objects (XI. In this case, the user
must be able to declare X, Y and Z as objects of some class,
declare the actions DEFINE and REFERENCE to be valid on sub-
sets of objects from this class, and specify that the
assignment statement above results in the creation of a
flowgraph node.

Figure 1.1 gives a graphic description of how SAM/SAL
works. At the top of the figure, a specification program S
is submitted to SAL for compilation. Outputs from SAL are
then fed to an automatic parser generator and to a semantic
evaluator generator. A parser and semantic evaluator are
then produced. A typical program U written in the language
specified by S can then be fed to the generated parser; the
parser output is in turn fed to the generated semantic
evaluator; and the semantic evaluator in turn produces the
desired annotated flowgraphs associated with the program U
as specified by S.

Th SA&& SAL System

2 The SAM/SAL System

SAL
Program

S

Figre.1SAM/ASse

The SAM/SAL System 3

Two output files are generated by the semantic evalua-

tor.

(1) Listings File.

The listings file contains (a) any system error mes-
sages resulting from the semantic evaluation phase, (b)
any special output requested by the user, and (c) a
listing of program statistics.

(2) Tables File.

The tables file is automatically generated by the
semantic evaluator upon successful semantic analysis of
the input. Primarily, this file contains a dump of the
sym-ol table, callgraph and flowgraphs generated by the
serantic evaluator for the input.

Details on how this system works on the CU CDC-Cyber
system are given in Appendix A.

1.1.2. Motivation

Research directed by Drs. Leon J. Osterweil and Lloyd
D. Fosdick has lead to the design and implementation of a
software tool, DAVE, which automatically detects certain
static-semantic and data-flow errors in ANSI Standard For-
tran programs [Fosd 76]. We recently completed a prototype
of a revised version of DAVE which facilitates automatic
modifications for some dialects of Fortran. Unfortunately,
all semantic specifications must be manually redesigned for
each such dialect.

The SAM/SAL system was motivated by the desire to have
a fully automated system which eliminates the ad hoc manner
of specifying programming languages and their dialects.

1.2. Design Requirements

SAL is a specification language in which other (pro-
cedural) progralnming languages are described. SAL was
designed to have the power to capture all syntax and seman-
tic descriptions of a large class of programming languages,
specifically for the purpose of generating annotated flow-
graphs for sample programs written in the specified
language.

The device used for semantic specifications is a modi-
fied form of attributed grammars [Knuth 68]. It was the
intent of this design to take advantage of existing reli-
able, portable software tools. At a high level, we were
able to use an automatic parser generating system, CLEMSW,
implemented on the CU CDC Cyber by Geoffrey Clemm [Clemml

4 The SAM/SAL System

79]. The interface to this parse generator is automatically
provided by the SAM/SAL system. The SAL compiler itself and
the main driver for the semantic evaluator are written in a
slightly extended version of PASCAL. This allows modifica-
tions and extensions to be made to the SAL compiler very
easily, while providing reliable object code by taking
advantage of an already existing compile:r. (This also lends
some portability to the SAM/SAL system -- a property not
originally in the design requirements and not completely
demonstrated yet). At the time of implementation, no CDC
Cyber attribute grammar systems were known to be available.
Consequently, the remainder of the SAM/SAL system was com-
pletely designed and implemented from scratch.

1.3. Synax Notation

Below is a description of the context-free syntax used
to describe SAL. This notation is a variant of the Backus-
Naur Form.

(a) Angled brackets enclose grammar variables, for example

<PROGRAM> <LIST OF ATTRIBUTES>
<STATEMENT> <SUB 12>

(b) Double-angled brackets enclose grammar variables whose
syntax and semantic rules are given in the PASCAL
Report and User's Manual [Jensen 741, for example

<<TYPE> <<PROCEDURE OR FUNCTION DECLARATION >

<<IDENTIFIER>>

(c) Reserved words and delimiters are enclosed in double
quotes, for example

SBEGIN" "OBJECT"

(d) Square brackets enclose optional items, for example

<PROGRAM HEADING> [<PREAMBLE PART>] <DECLARATION PART>

(e) Braces enclose a repeated item. The item may appear

zero or more times, for example

<IDENT LIST> ::- <IDENTIFIER> ("," <IDENTIFIER>)

The SAM/SAL System 5

1.4. Language Outline

A SAL program is given by

<SAL PROGRAM> := "PROGRAM" <<IDENTIFIER>> ";"
[<PREAMBLE SPECIFICATIONS>]
<DECLARATION SPECIFICATIONS>
<LANGUAGE SPECIFICATIONS>
<PROCEDURE SPECIFICATIONS> "."

Each of the four specification parts are described in detail
in Chapters 3 through 6 of this report. The program name
<<IDENTIFIER>> has no functional purpose other than to name
the SAL program.

A SAL program specifies a single programming language.
In some cases, the SAL program itself may serve as the
definition of the language. However, the intended use of a
SAL program is only to capture enough of the semantics of a
language (generally defined by other methods) to result in
the generation of annotated flowgraphs for programs written
in the specified language. As a result, not all language
semantics are necessarily specified.

CHAPTER 2

Lexical Elements

This chapter defines the lexical elements of SAL.

2.1. Characters

The basic character set consists of letters, digits,
special characters, the space character, and the end-of-line
character (denoted by EOL).

(a) Letters

A BC DE F GH I JKLMNO PQRSTUVWXYZ

Implementation restrictions require that only upper
case letters be allowed.

(b) Digits
0123456789

(c) Special charactersof # $ <) > + - * . =

(d) The space character.

(e) The end-of-line character.

2.2. Comments

SAL recognizes two forms of comments:

(1) Inline comments

The construct

(* <any sequence of characters not containing "*)> *)

is an inline comment. Below are two examples of inline
comments.

6 Lexical Elements

Lexical Elements 7

(* THIS IS A COMMENT ON ONE LINE *)

THIS IS A COMMENT
OVER FOUR LINES

(2) Endline comments

The constructs

< <any sequence of characters except EOL> EOL

or

$ "any sequence of characters except EOL> EOL

are endline comments. An example of an endline comment
is

ENDLINE COMMENTS ARE
NICE FOR RUNNING TEXT
ALONG SIDE ACTUAL SAL
CODE.
#

All endline comments begin with a "#" or "$" and are
terminated by the next end-of-line. An endline comment
beginning with "$" in addition causes a page-eject to
occur starting with the next line following the EOL.

2.3. Lexical Units

The lexical units of SAL include names, numbers, delim-
iters, and literals. Except as explicitly provided, no lex-
ical unit may contain imbedded spaces, comments, or EOL's.

2.3.1. Names

There are essentially three types of names recognized
as primitive token units:

(a) Identifiers

The syntax for identifiers is as in the PASCAL Report,
and as such its token unit type is denoted by ((IDEN-
TIFIER'> (see Section 1.3(b)).

The length of an identifier is the number of characters
comprising its string.

8 Lexical Elements

Examples

START SUB1 A2B3 SAL X12345

(b) Grammar identifiers

The syntax for <GRAMMAR IDENTIFIER> is

<GRAMMAR IDENTIFIER>
"<" <LETTER> (<LETTER> <DIGIT>I "I } ">"

The length of a grammar identifier is the number of
characters between its enclosing angled brackets.

Exc-aples

<PROGRAM> <DECLARATION PART>
<STATEMENT LIST> <FORTRAN 4>

(c) Qualified grammar identifiers

The syntax for the token unit <QUAL GRAMMAR IDENTIFIER>
is

<QUAL GRAMMAR IDENTIFIER>

"<'LETTER> (<LETTER> I <DIGIT> I" "1"(" <DIGIT> (<DIGIT>) "1)""4

The length of a qualified grammar identifier is the
number of characters between its enclosing angled
brackets minus its parenthetic qualifier.

Examples

Qualified Grammar Identifier Length

<PROGRAM(1)> 7
<FORTRAN 4(3)> 9

<STATEMENT LIST(2)> 14
<Al 23 B(1)> 7

2.3.2. Numbers

There are two types of numbers recognized by SAL as
token units.

Lexical Elements 9

(a) Integers

The syntax for integers is

<INTEGER> ::- <<UNSIGNED INTEGER>,

Examples

12345 22222 5432 0

(b) Reals

The qyntax for reals is

.REAL> ::= <<UNSIGNED REAL>>

Examples

1.4 25.6E-13 5.OE+12
0.3 1.498E1. 3.14159

2.3.3. Literals

The token unit <LITERAL> is any sequence of characters
not containing EOL and enclosed between two double quotes.
To include a double quote in the literal, one writes the
quote mark twice.

The length of a literal is the number of characters
between the two enclosing double quotes. Two consecutive
double quotes appearing within the literal are counted as a
single character.

Examples

"1" and are two literals of length one.
"AB" and are two literals of length two.
"IS THIS A ""LITERAL""?" is a literal of length 20.

A literal must have a length greater than zero.

2.3.4. Delimiters

The characters
() [J + *< , • " > =

inl Lexical Elements

serve as one-character delimiters.
The character strings

(> (= >- :

serve as two-character delimiters.
The character string

serves as a three-character delimiter.

2.3.5. Lexical-Unit Restrictions

The current SAM/SAL implementation restricts the length
of an identifier (2.3.1(a)), grammar identifier (2.3.1(b)),
and qualified grammar identifier (2.3.1(c)) to be no more
than 30 characters. The length of a literal (2.3.3) may be
no more than 15 characters.

2.4. Sp,2 ces

All lexical units may be seperated by sequences of
spaces, comments, or EOL's. The use of spaces, comments,
and EOL's is mainly to provide readability and textual
organization to the source program.

2.5. Reserved Words

The following identifiers are reserved words. The SAL
programmer may not use reserved wori in a context other
than that explicit in the definition of SAL.

ACTION DO LABEL PREAMBLE SPECIFICATIONS
ACTIONS DOWNTO LANGUAGE PROCEDURE SYNTAX
AND ELSE MOD PROGRAM THEN
ARRAY END NIL RECORD TO
ATTRIBUTE FILE NODE REPEAT TOKEN
ATTRIBUTES FLOWGRAPH NOT RETURN TYPE
BEGIN FOR OBJECT RULES TYPES
CASE FUNCTION OF SCANNER UNTIL
CLASSES GOTO OR SEMANTIC VAR
CONST GRAMMAR OTHER SEMANTICS WHILE
DECLARATIONS IF PACKED SET WITH
DIV IN

CHAPTER 3

Preamble

A given implementation of SAM/SAL is expected to pro-
vide a standard environment of resources needed to aid the
SAL programmer in a language specification. The standard
environment should provide:

(a) A default lexical scanner.

(b) Pre&%-fined data-structures to represent

(1) Caligraph nodes and edges
(2) Flowgraph nodes and edges
(3) Object Classes
(4) Actions

(c) Appropriate predefined accessing functions and pro-
cedures for these structures.

A SAL preamble is an optional specification which allows the
user to extend or somewhat control this standard environ-
ment. Through the preamble, some implementation considera-
tions (which are otherwise meant to be invisible to the
user) are made visible. The form of a preamble is given by

<PREAMBLE SPECIFICATION>
"PREAMBLE"

(<IMPLEMENTATION SPECS> I
"END" "PREAMBLE"

..here the form and the content of the implementation specif-
ications may vary from one installation to another. The
current implementation specifications allowed on the CU CDC
Cyber include (a) a capability to override the default lexi-
cal scanner by introducing another scanner more specific to
the language being defined; (b) some capability to control
data-structure memory allocation; and (c) the capability to
control the form of the parser-grammar output. These three
capabilities are elaborated below.

3.1. Scanner Specification

This would be given by

<IMPLEMENTATION SPEC> :<:i (SCANNER>

Preamble 1

12 Preamble

where the form of the scanner is as described in [Clemm2
79]. The scanner must return four "kept" token types.

(1) "IDNTFR" corresponding to <IDENTIFIER> in the user-
specified grammar.

(2) "STRING" corresponding to (STRING> in the user-
specified grammar.

(3) "CNSTNT" corresponding to <CONSTANT> in the user-
specified grammar.

(4) "FLOAT" corresponding to <FLOAT> in the user-specified
grammar.

In addit'&n,

(5) if us r-specified grammar uses any special charac-
ter as a literal token unit and that character always
appe., e in literals of only length 1, then that charac-
ter i . to be returned as the token type "SINGLE" from
the scanner, and

(6) if ,&ie user-specified grammar uses any special charac-
ter as a literal token unit and that character may
appear in at least one literal of length greater than
one, then that character is to be returned by the
scanner as the token type "MANY".

3.2. Data Structure Control

All data structures provided by the standard environ-
ment have a default size. Most of these structures may have
their default size changed by assigning a new size-value to
an appropriate identifier in the preamble. Such assignments
are given by the following syntax

<IMPLEMENTATION SPEC>
<PREAMBLE ID> "" <INTEGER> "i"

where

<PREAMBLE ID> := "MAXSETS" I "MAXSETSIZE" I
"MAXDPNODES" I "MAXEDGES"
'MAWSYM" go "MAXCHAR"
"MAXATTBLCK" I "MAXPACKET"
"MAXPARSENODES"

3.-.1. MAXSETS (default 100)

This determines the number of SETS to be reserved in
the SAM/SAL set--pool. The amount of memory allocated for

Preamble 13

sets is then given by MAXSETS*MAXSETSIZE words.

3.2.2. MAXSETSIZE (default 10)

This determines the number of words to be used in a
set. For the CU CDC Cyber 59 bits of each word are used.
Thus if MAXSETSIZE=3 then each set represents 3 x 59 = 177
objects.

3.2.3. MAXDPNODES (default 2000)

-his determines the maximum number of dependency-graph
nodes that will be reserved by the semantic evaluator phase.
This graph controls the processing during semantic evalua-
tion and is of no direct interest to the user except that
its defavlit size may be inadequate for semantic evaluation
of large scurce programs written in the language specified.

3.2.4. MAXEDGES (default 2500)

This determines the maximum number of dependency-graph
edges that will be reserved by the semantic evaluator phase.
This may need to be explicitly set if the default value is
inadequate for semantic evaluation of large source programs
written in the specified language.

3.2.5. MAXPARSENODES (default 1000)

This determines the maximum number of parse-tree nodes
that will be reserved for the semantic evaluator phase.
This may need to be explicitly set if the default value is
inadequate for semantic evaluation of large source programs
written in the specified language. On the present implemen-
tation, each parse-tree node is two central memory words.

3.2.6. MAXSYM (default 250)

This determines the maximum number of symbol entries
that will be reserved for the symbol table during the seman-
tic evaluator phase. On the CDC Cyber, the total symbol
table size can be given by

MAXSYM * (1 + MAXCHAR/10)

central memory words where MAXCHAR (a multiple of 10) is the
maximum number of characters per symbol string.

3.2.7. MAXCHAR (default 10)

This determines the maximum number of characters per
symbol string and should be a multiple of the number of
characters which can be packed into a central memory word
(in the case of the CDC Cyber series, a multiple of 10).

14 Preamble

3.2.8. MAXATTBLCK (default 250)

This determines the maximum number of symbol
attribute-blocks that will be reserved for the semantic
evaluator phase. The attribute table size will then be
given by MAXATTBLCK * N words where N is the maximum number
of symbol attributes declared for a given object class (see
Section 4.1). Since a symbol may possess at ,,ost one attri-
bute block, it is always sufficient for MAXATTBLCK to be
less than or equal to MAXSYM.

3.2.9. MAXPACKET (default 250)

For the current implementation, a packet is a con-
venient storage unit which holds action annotations. As
such, flcwgraph nodes, expression-tree nodes, and use-table
nodes are all packets. MAXPACKET determines the total
number of packets to be reserved by the semantic evaluator
phase. The amount of memory occupied by packet allocation
is

MAXPACKET * (2 + NUMACT)

words where NUMACT represents the total number of actions
declared by the user (see Section 4.2).

3.3. Grammar Output Control

Often in practice a group of syntax rules are alternate
rules for the same grammar variable. For example, the list
of rules

<A>
<A> <C>
<A> <D>

can be expressed in an "alternatives" form

<A> ::= I <C> I <D>

By default, since syntax rules in SAL can never explicitly
be expressed in "alternatives" form (see Section 5.2.1.1),
they are not listed to the grammar output file in this form.
However, the parser generator used for the present SAL
implementation will require significantly less memory if the
grammar file generated by SAL were in "alternatives" form.
This can be achieved by the ALTERNATIVES command in the
preamble. The syntax for this command is

<IMPLEMENTATION SPEC> ::- "ALTERNATIVES" "v"

An example of a preamble is

Preamble 15

PREAMBLE

MAXSYM = 500- # INCREASES DEFAULT SYMBOL TABLE SIZE.
MAXSETS = 800; # INCREASE DEFAULT SET-POOL SIZE.*
ALTERNATIVES: # WRITE GRAMMAR OUTPUT FILE

IN ALTERNATIVES FORM.
END PREAMBLE

CHAPTER 4

Declarations

Recall that the key idea (see Section 1.1) of a SAL
vrogram is to be able to specify actions on objects at flow-
graph nodes. The primary purpose of the declarations sec-
tion is to provide a mechanism for the user to declare
classes of objects and actions for these objects in order to
reflect the type of node annotations desired on the output
flowgraphs. The syntax for the declarations specifications
section ip

<DECLAdLTION SPECIFICATION>
"DECLARATIONS"

<OBJECT CLASS DECLARATIONS>
<ACTION DECLARATIONS>
[<FLOWGRAPH NODE TYPES)]
<OTHER DECLARAT IONS>

"END" "DECLARATIONS"

<OBJECT CLASS DECLARATIONS>, <ACTION DECLARATIONS>, <FLOW-
GRAPH NODE TYPES>, and <OTHER DECLARATIONS> are elaborated
further in Sections 4.1 through 4.4.

4.1. Object Class Declarations

It is convenient to think of objects as belonging to
classes, each class having its own set of actions. In PAS-
CAL, for example, the object classes might correspond to
variables, labels, procedures, functions, and the main pro-
gram. Of these five classes, the user may wish to associate
one or more actions with only the "variables" class. In the
object class declaration section, all object classes are
declared, along with a (possibly empty) list of object
attributes which objects in that class may possess. The
syntax for the object class declarations is

<OBJECT CLASS DECLARATIONS> :
"OBJECT" "CLASSES" ""

<OBJECT CLASS SPEC>
< <OBJECT CLASS SPEC> I

<OBJECT CLASS SPEC> ::

<OBJECT CLASS> "."

(" [<OBJECT ATTRIBUTE LIST>] ")" "?"

16 Declarations

-- -- now.

Declarations 17

<OBJECT CLASS> <<IDENTIFIER>>

<OBJECT ATTRIBUTE LIST> : <OBJECT ATTRIBUTE SPEC>
<OBJECT ATTRIBUTE SPEC>]

<OBJECT ATTRIBUTE SPEC>
<OBJECT ATTRIBUTE> " (OBJECT ATTRIBUTE>)

<<TYPE>>

<OBJECT ATTRIBUTE> ::= <<IDENTIFIER>>

For examle, in a specification of PASCAL one might have

OBJECT CLASSES
VARIABLES : ();
LABELS : (FN:FGNODE);
PROCEDURES: (PCALL:CALLPTR;PENTRY:FGNODE);

FUNCTIONS : (FCALL:CALLPTR;FENTRY:FGNODE);

This declares four object classes: VARIABLES, LABELS, PRO-
CEDURES, and FUNCTIONS. The class VARIABLES has no object
attributes associated with it. The object class LABELS has a
single attribute, FN, which is of the predefined flowgraph
node descriptor type FGNODE (see Section B.1.5). The object
classes PROCEDURES and FUNCTIONS each have two attributes
associated with them; the first (PCALL and FCALL, respec-
tively) is of the predefined callgraph node descriptor type
CALLPTR (see Sect.ion B.1.7) and is to hold the callgraph
node for any object in either of these classes; the second
(PENTRY and FENTRY, respectively) is to hold the "entry"
flowgraph node for any object in threse classes.

An object can be inserted into a declared object class
via a semantic rule (see Section 5.2.2) or via a SAL pro-
cedure or function invoked by a semantic rule (see Section
4.4). Similarly, an attribute for an object can be given a
value via a semantic rule or via a procedure or function
invoked by a semantic rule.

An Object Attribute is different from a Grammar Attri-
bute (Section 5.1) and it is important that the user does
not confuse these two concepts. An Object Attribute annotes
the object (or symbol) which possesses it. It may be
defined, referenced, and redefined by use of Attribute Table
accessing functions (Section B.2.3). A Grammar Attribute,
on the other hand, annotates a parse tree node (or
equivalently, the grammar variable which names that node),
and is subject to the rigorous rules of attributed grammar

]18 Declarations

evaluation [Knuth 68]. As such, a Grammar Attribute may be

defined or referenced in a semantic rule (Section 5.2.2),
but may never be redefined.

4.2. Actions

Actions are declared for object classes. Each action
may affect only one object class, however un object class
may own zero or more actions. The syntax for action
declarations is

<ACTION DECLARATIONS> "ACTIONS .:"
<ACTION DEFINITION>
{ <ACTION DEFINITION> I

<ACTION DEFINITION>
<ACTION> f "," <ACTION> }

"ON" <OBJECT CLASS> ";"

<ACTION> ::= <<IDENTIFIER>

Continuing with our PASCAL specification example, an action
declaration might be

ACTIONS :
DEFINE, REFERENCE, UNDEFINE ON VARIABLES;
USED : ON LABELS;

Such a declaration would allow the user to later associate
subsets of the object class VARIABLES with the actions
DEFINE, UNDEFINE, and REFERENCE, and associate subsets of
the object class LABELS with the action USEr,.

4.3. Flowgraph Node Types

The user is allowed to declare mnemonic names for the
node types of the flowgraphs to aid in program readability.
These names may then be used in a SAL statement which sets
the type for a particular flowgraph node. These mnemonic
names are automatically retained by the semantic evaluator
phase for error reporting or user displays. The syntax for
the flowgraph node type declaration is

<FLOWGRAPH NODE TYPES)
"FLOWGRAPH" "NODE" "TYPES" ":"

<NODE NAME> f "," <NODE NAME>] ";"

<NODE NAME> ::= <(IDENTIFIER>>

An example of this declaration form for PASCAL is

Declarations 19

FLOWGRAPH NODE TYPES
ENTRY, EXIT, ASSIGNMENT, GOTOSTMT, PROCCALL,
EMPTYSTMT, IFTEST, CASETEST, WHILETEST,

REPEATTEST, FORINIT, FORTEST, FORINCR, FORUNDF;

Each node name must be no more than ten characters in

length.

4.4. Other Declarations

The SAL user will often find it necessary to create

other procedures and functions based on the primitive capa-
-ilities provided by the Standard Environment. The newly
created procedures and functions are typically higher level
routines .;hich characterize functional properties of the
language being specified. The definitions of such pro-
cedures and functions are elaborated in the declaration
specifications section of the SAL program. Any constants,
types, or global variables may also be declared in this sec-
tion. The syntax for this is given by

<OTHER DECLARATIONS>
<<CONSTANT DEFINITION PART>

<<TYPE DEFINITION PART>)
<<VARIABLE DECLARATION PART>>
<<PROCEDURE AND FUNCTION DECTAPATION PART>>

Note that any of the four parts above may be empty (as per
usual PASCAL syntax). The motivation for providing this
declaration form in OAL will become more apparent in Chapter
5 (specifically, see 3ections 5.1.2.2 and 5.2.2.3(e)).

CHAPTER 5

Language Specifications

The language specifications section contains the pri-
mary information to specify a desired programming language.
The syntax for this section is

<LANGUAGE SPECIFICATIONS>
"LANGUAGE" "SPECIFICATIONS"

<GRAMMAR ATTRIBUTE PART>
<LANGUAGE RULES>

END" "LANGUAGE" "SPECIFICATIONS"

<GRAMMAR ATTRIBUTE PART> and <LANGUAGE RULES> are further
elaborated in Sections 5.1 and 5.2, respectively.

5.1. Grammar Attributes

This subsection allows the user to declare all of the
grammar variables to be used in the language specification.
For each such grammar variable a (possibly empty) list of
grammar attributes is also declared. Each such attribute
must be given a type.

5.1.1. Grammar Attribute Part : Syntax

The syntax for the grammar attribute part is

<GRAMMAR ATTRIBUTE PART> : :=
"GRAMMAR" "ATTRIBUTES"

<GRAMMAR VAR ATTLIST>
< <GRAMMAR VAR ATTLIST>]

-END" "GRAMMAR" "ATTRIBUTES"

<GRAMMAR VAR ATTLIST> ::= <GRAMMAR IDENTIFIER> ":"
[<GRAMMAR ATTLIST>] "v"

<GRAMMAR ATTLIST> <GRAMMAR ATT DECL>
S"; " <GRAMMAR ATT DECL>I

<GRAMMAR ATT DECL>
<GRAMMAR ATTRIBUTE> < "" (GRAMMAR ATTRIBUTE> I

<:" <TYPE>>

20 Language Specifications

. .- :: _ -. -- r -, - -" - -.. .

Language Specifications 21

<GRAMMAR ATTRIBUTE> :: <<IDENTIFIER>>

An example of a grammar var attlist is

<LABELLED STATEMENT> :
LABELVAL : SYMBOL;
START, FINISH : FGNODE;

5.1.2. Grammar Attribute Part : Semantics

A grammar var attlist serves to declare a grammar vari-
able and its associated grammar attributes. Such a declara-
tion allows the user to later reference or define the attri-
buted variables (see Section 5.2.2.2) constructed from a
grammar variable and any one of its grammar attributes. For
a more complete discussion of the use and meaning of grammar
attributes, see [Knuth 68].

5.1.2.1. Primitive Grammar Variables

Four predefined grammar variables belong to the set of
terminal symbols of any user-specified grammar in SAL.
These four grammar variables are called primitive grammar
variables and include

<IDENTIFIER> <CONSTANT>
<FLOAT> <STRING>

These are the only four grammar variables allowed in the set
of terminals for any user-specified grammar in SAL. As men-
tioned later in the Syntax Rule / Scanner Interface section
(5.2.1.2), these terminal grammar variables name parse tree
leaf nodes associated with "kept" tokens ([Clemm2 79]) in
the source code of the parsed program being analyzed. A
kept token has two pieces of information of use to the SAL
programmer: (1) a symbol descriptor identifying the object
being kept, and (2) the token number for the occurrence of
the object in the source text. As such, for each of the
four primitive grammar variables there exists two predefined
grammar attributes; namely, VALUE of the standard type SYM-
BOL (Section B.1.2) and TOKEN of the standard type INTEGER
(Section B.1.9). The VALUE and TOKEN attributes of any
primitive grammar variable are automatically set by SAM/SAL
to contain the symbol descriptor and token number, respec-
tively, of the associated token in the source text.

The SAL user must observe the following rules regarding
the declaration of primitive grammar variables.

(a) Only the four primitive grammar variables mentioned
above may possess grammar attributes named VALUE and
TOKEN.

___W W"I -a

22 Language Specifications

(b) A primitive grammar variable may possess no grammar
attributes other than VALUE and TOKEN.

(c) A user wishing to use any of the four primitive grammar
variables must still declare those grammar variables
(along with any of the two special grammar attributes
VALUE or TOKEN desired) according to the syntax rules
of Section 5.1.1.

This discussion on the Grammar Attribute Part in gen-
eral and the Primitive Grammar Variables in particular is
now best illustrated by the following example:

GRAMMAR ATTRIBUTES #
<PROGRAM> : ; # NO ATTRIBUTES

#
<IDENTIFIER> : #

VALUE : SYMBOL; # WILL ONLY USE "VALUE" ATTRIBUTE
OF THIS PRIMITIVE GRAMMAR VAR.

<STRING> : #
VALUE : SYMBOL; * WILL USE BOTH PREDEFINED ATTRI-
TOKEN : INTEGER; # BUTES FOR THIS PRIM. GRAMMAR VAR.

#
<CONSTANT> : #

VALUE : SYMBOL; # THIS IS OK, SINCE PRIMITIVE.
NMI : INTEGER; # INVALID... "NUM" IS NOT A VALID

ATTRIBUTE FOR A PRIM. GRAMMAR VAR
<STATEMENT> : #

START : FGNODE; # OK, SINCE "STATEMENT" IS NOT PRIM.
VALUE :SYMBOL; # INVALID... NONPRIMITIVE GRAMMAR

VAR MAY NOT HAVE ATTRIBUTE NAMED
"VALUE".

END GRAMMAR ATTRIBUTES #

Note that this example contains two (documented) errors.
Also, the attributed variables (see Section 5.2.2.2)
<IDENTIFIER>.VALUE, <STRING>.VALUE, and <CONSTANT>.VALUE are
predefined to be the symbol descriptors to the identifier,
string, and constant, respectively, in the symbol table.
The attributed variable <STRING>.TOKEN is predefined to be
the token number for the occurrence of the string in the
source text associated with this parse-tree terminal. The
attributed variable <STATEMENT>.START is not predefined and
must be explicitly defined by a semantic rule (see Section
5.2.2).

5.1.2.2. Type Restrictions

For the current implementation of SAL, attribute types
must be either an INTEGER or subrange of INTEGER. If a
grammar attribute is conceived to be of some structured type
T (e.g. a PASCAL RECORD type), then the user should define
the type T in the type definition part and declare a

Language Specifications 23

variable V in the variable declaration part of the declara-
tion specification section (see Section 4.4), so that V is
some array of type T. V then acts as a pool of resources of
type T, and an index into V then acts as a descriptor to an
object of type T. Since such an index is a su range of
INTEGER, this descriptor is a valid grammar attribute. This
is in fact how SETS, FLOWGRAPH NODES, CALLGRAPH NODES, etc.
are provided by the current Standard Environm-nt. For any
such pool of structured objects declared by the user, the
user should also carefully provide accessing functions and
procedures to (1) allocate and deallocate an object in the
pool, and (2) set or get fields within such an object.

5.2. Language Rules

The syntax for the language rules subsection is

<LANGUAGE RULES> "RULES"
<RULE>
[<RULE>]

"END" "RULE S"

<RULE> <SYNTAX RULE>
"SEMANTICS"

£ "OBJECT" "SPECIFICATIONS"
<SEMANTIC RULE LIST> I

["ATTRIBUTE" "SPECIFICATIONS"
<SEMANTIC RULE LIST> I

F "FLOWGRAPH" "SPECIFICATIONS"
<SEMANTIC RULE LIST> I

["ACTION" "SPECIFICATIONS"
<SEMANTIC RULE LIST> I

C "OTHER" "SPECIFICATIONS"
<SEMANTIC RULE LIST> I

"END"

<SEMANTIC RULE LIST> ::= <SEMANTIC RULE>
(";" <SEMANTIC RULE> I

The syntax rule of any language rule is said to "govern" all
semantic rules in any semantic rule list of that same
language rule. <SEMANTIC RULE> is further elaborated in
Section 5.2.2.2.

5.2.1. Syntax Rules

The collection of syntax rules, when combined, are to
form a context-free accepting grammar and tree-building
grammar for the specified language. If the language being
specified is not context free (e.g. Fortran 66), then the
user must carefully define a powerful lexical scanner in the

24 Language Specifications

preamble (see Section 3.1) to resolve all context-sensitive

features.

5.2.1.1. Syntax Rule Syntax

The syntax of a syntax rule is

<SYNTAX RULE>
<GRAMMAR VARIABLE> "::=" <SYNTAX EXPRESSION>

<GRAMMAR VARIABLE> ::= <GRAMMAR IDENTIFIER> I
<QUAL GRAMMAR IDENTIFIER>

<SYNTAX EXPRESSION> :: <SYNTAX UNIT> [<SYNTAX UNIT>)

<SYNTkX UNIT> ::= <GRAMMAR VARIABLE> I <LITERAL>

Examples

<PROGRAM> ::= <HEADING> ";" <DECLARATIONS> ";" <BODY> "."

<STMT LST(1)> ::= <STATEMENT> ";" <STMT LST(2)>

The presence of a qualifier in a grammar variable has
no effect on the syntax rule. Qualifiers are a semantic
device only (see Section 5.2.2.3(b)). Thuis, the two syntax
rules below are grammatically indistinguishable:

<IDENT LIST(I)> ::= <IDENT LIST(2)> "," <IDENTIFIER>

<IDENT LIST> ::= <IDENT LIST> "," <IDENTIFIER>

The length of a grammar variable is the length of the
grammar identifier (Section 2.3.1(b)) or qualified grammar
identifier (Section 2.3.1(c)) which it derives.

5.2.1.2. Syntax Rule / Scanner Interface

In Section 3.1 it was mentioned that four special token
types must be provided by the lexical scanner. These types
correspond to the "kept" tokens ([Clemm2 79]) in a given
source stream, and correspond with the four primitive grm-
mar variables mentioned in Section 5.2.1.2. Explicitly,
this correspondence is given by

"IDNTRF" <--> <IDENTIFIER>
"STRING" <--> <STRING>
"CNSTNT" <--> <CONSTANT>
--FLOAT" <--> <FLOAT>

This correspondence is automatically known to SAM/SAL. All

Language Specifications 25

final details of the interface protocol are automatically

handled by SAM/SAL.

5.2.1.3. Syntax Rule Restrictions

There are four restrictions to the collection of syntax
rules. The first two restrictions have to do with general
requirements of a context-free grammai. The >ast two res-
trictions are due to implementation requirements peculiar to
the automatic parser generator.

(1) There must exist exactly one grammar variable (called
the start variable) which is the left side of at least
one syntax rule and which appears on the right side of
no syntax rule.

(2) The primitive grammar variables (see Section 5.1.2.1)
may not appear on the left side of any syntax rule.

(3) The right side of a syntax rule may not be empty.
Unfortunately, this may force a large increase in the
number of syntax rules than might otherwise be possible
if the empty production were permitted.

(4) The right side of a syntax rule may have at most seven

syntax units.

5.2.2. Semantic Rules

The semantic rules specified in SAL may be partitioned
into five phases: OBJECT SPECIFICATIONS, ATTRIBUTE SPECIFI-
CATIONS, FLOWGRAPH SPECIFICATIONS, ACTION SPECIFICATIONS,
and OTHER SPECIFICATIONS. The use of these phases is a sim-
ple variation on a pure attributed grammar as defined in
[Knuth 68], and is explained as follows. After some prac-
tice at using the pure nonprocedural attributed grammar dev-
ice, it became clear that a specification program using such
a device was intellectually more managable if it was at
least conceived of as a sequence of successive phases, where
the run-time completion of a phase could be characterized as
the completion of some conceptual user-level task. In a SAL
program, the user's job is to create objects (update a sym-
bol table), possibly decorate these objects (create object
attributes in an attribute table), build flowgraphs, anno-
tate flowgraph nodes with actions, and possibly perform
other miscellaneous activities on these structures. The
five phases mentioned above are intended to correspond to
these five conceptual activities. The semantic rules within
a phase are directed toward performing these corresponding
activities. The concept of partitioning semantic rules into
phases thereby allows a user to build or update global
structures (symbol table, attribute table, flowgraph node
table, edge lists, action packets, etc.) without having to

26 Language Specifications

pass copies of these large structures up and down the parse
tree.

This might be better realized with the following illus-
tration. In order to create an object attribute in the
attribute table the object must first ey2st as a symbol
table entry. A semantic rule relying on either the object
being in the symbol table or one of its attriuutes being in
the attribute table must not execute until such table
updates have been made. One expensive (but pure) method of
signalling the semantic rule that the updates it requires
have indeed been made is to propogate a set of grammar
attributes up and down the parse tree to signal the comple-
tion of the symbol table update phase, and then propogate
another set of grammar attributes up and down the parse tree
to signa. the end of the attribute table creation phase.
The propogation of such grammar attributes is costly both in
terms of memory (as many as two extra attributes needed per
parse tree node per phase) and in terms of time (each attri-
bute would have to be readied, scheduled, and computed).

With the semantic rule partitioning introduced in SAL,
all of this effort of defining and propogating extra grammar
attributes for end-of-phase signalling can be eliminated or
greatly reduced.

5.2.2.1. Evaluation Order of Semantic Pules

The collection of all semantic rules specify a nonpro-
cedural set of instructions. It is generally not clear from
the source text ordering of these rules what their actual
evaluation order might be.

5.2.2.1.1. Interphase Ordering

The phase-partitioning mentioned above (5.2.2) has the
following interpretation: no semantic rule in a given seman-
tic phase can execute until all semantic rules in any
preceding phase have executed. This of course implies an
ordering to the semantic phases. Explicitly, this ordering
is

(1) The OBJECT SPECIFICATIONS phase is first and therefore
has no preceding phase. All semantic rules in this
phase are therefore constrained by no rules from other
phases. The intent of this phase is to contain (among
other rules) those semantic rules which update the sym-
bol table by creating objects (symbols).

(2) The ATTRIBUTE SPECIFICATIONS phase is second. All
semantic rules in this phase execute only after the
semantic rules in the OBJECT SPECIFICATIONS phase have
executed. The intent of this phase is to be able to

.-. .._.. . - -".- - .. "" " -

Language Specifications 27

rely on the existence of a completed symbol table from
the previous phase so that any associated symbol attri-
butes may now be added to the attribute table.

(3) The FLOWGRAPH SPECIFICATIONS phase is third. The intent
of this phase is to build flowgraph nodes and edges
relying on the existence of a completed symbol table
and attribute table. A semantic rule in this phase may
execute only after all semantic rules in the OBJECT
SPECIFICATIONS and ATTRIBUTE SPECIFICATIONS phase have
executed.

(4) The ACTION SPECIFICATIONS phase is fourth. The intent
of this phase is to annotate the nodes in the flow-
graphs created by the previous (FLOWGRAPH SPECIFICA-
TIONS) phase. A semantic rule in this phase may exe-
cutri only after all semantic rules in the OBJECT
SPECIFICATIONS, ATTRIBUTE SPECIFICATIONS, and FLOWGRAPH
SPECIFICATIONS phases have executed.

(5) The OTHER SPECIFICATIONS phase is fifth and last. The
intent of this phase is to allow the specification of
any additional semantic rules which may rely on the
existence of all tables and structures completed by the
previous four phases. A semantic rule in this phase
may execute only after all semantic rules in any of the
other four phases have executed.

5.2.2.1.2. Intraphase Ordering

Within a phase semantic rules are executed in an order
determined by their dependencies on the other grammar attri-
butes (see [Knuth 68]). In general this will not be a total
order in that at any given moment more than one semantic
rule may be ready for execution. The determination of gram-
mar attribute dependencies, detection of which semantic
rules at a given moment are ready for execution, and
scheduling of all "ready" rules for execution is automati-
cally handled by the SAM/SAL semantic evaluator.

An additional intraphase ordering imposed by SAL is
that all assignment rules are executed before any procedure
rule.

5.2.2.1.3. Evaluation Order Restrictions

It is possible to have a collection of semantic rules
which cannot all execute. A simple example of this is
illustrated by the following language rule.

28 Language Specificati,-ns

<A>
SEMANTICS

OTHER SPECIFICATIONS
<A>.ATTl Fl(.ATTl);
.ATTI F2(<A>.ATT1)

END

From the first semantic rule in the example iL is clear that
<A>.ATTI cannot be evaluated until after the evaluation of
.ATTl. But from the second rule we see that .ATTI
cannot be evaluated until after the evaluation of <A>.ATTI.
From the point of view of the SAM/SAL scheduler, a deadlock
exists.

A SAL program in which all semantic rules can be
evaluated without interdependency conflicts is called well
defined. A valid SAL program must be well-defined, and _t-
user must exercise care to ensure this behavior. The detec-
tion of any violations of a well-defined program occurs in
the semantic evaluation phase and not during program compi-
lation.

Research performed by other authors ([Bochm 76], [Jazay
75], [Kasten 78], and [Kenned 76]) has been done to investi-
gate methods for improving semantic evaluation by enforcing
a fixed evaluation strategy on the attribute grammar. In
all cases, these improvements were achie,ed by restricting
the class of attribute grammars accepted from the well-
defined class above.

5.2.2.2. Semantic Rule Syntax

The syntax for a semantic rule is

<SEMANTIC RULE> ::= <ASSIGNMENT RULE> I <PROCEDURE RULE>

<ASSIGNMENT RULE>
<ATTRIBUTED VARIABLE> ":=" <SEMANTIC EXPRESSION>

<PROCEDURE RULE>
<<IDENTIFIER>> f(" <SEMANTIC EXPRESSION LIST> ")" I

<SEMANTIC EXPRESSION LIST>
<SEMANTIC EXPRESSION> ("," <SEMANTIC EXPRESSION>)

4
<ATTRIBUTED VARIABLE>

<GRAMMAR VARIABLE> " <GRAMMAR ATTRIBUTE>

-- * . . -5- . . - -

Language Specifications 29

<SEMANTIC EXPRESSION>
(SEMANTIC SUBEXPRESSION>

<SET OP> <SEMANTIC SUBEXPRESSION>
<SEMANTIC SUBEXPRESSION>

<SET OP> :-.= "UNION" I "INTERSECTION" I "MINUS"

<SEMANTIC SUBEXPRESSION>
<SEMANTIC TERM> <ADD OP> <SEMANTIC TERM> I
<SEMANTIC TERM>

<ADD OP> "+" I "-"

<SEMANTIC TERM>
<SEMANTIC FACTOR> <MULT OP> <SEMANTIC FACTOR> 1
<SEMANTIC FACTOR>

<MULT OP> : := "I I

<SEMANTIC FACTOR> :
<INTEGER> I <REAL> I <<IDENTIFI.R>> I
<FUNCTION REFERENCE> I <ATTRIBUTED VARIABLE> I
<<SIGN > <SEMANTIC FACTOR> I
"(" <SEMANTIC EXPRESSION> ") "

<FUNCTION REFERENCE> : :=
<<IDENTIFIER > ["(" <SEMANTIC EXPRESSION LIST> ")"]

5.2.2.3. Semantic Rule Semantics

(a) For an attributed variable appearing in any semantic
rule, the following must hold.

(1) The grammar attribute composing the attributed
variable must appear in the grammar attribute list
for the declaration of the associated (unquali-
fied) grammar identifier (see Section 5.1.2).

(2) The grammar variable part of the attributed vari-
able must appear in the syntax rule governing (see
Section 5.2) the semantic rule containing the
attributed variable.

(b) A qualified grammar identifier is syntactically inter-
preted no differently than the same grammar identifier

30 Language Specifications

without the qualifier. However, in semantic rules such
qualifiers are often needed to destinguish between two
or more occurrences of the same grammar variable. This
is best illustrated by an example of a language rule:

<ID LIST(1)> ::= <ID> "," <ID LIST(?)>
SEMANTICS

OBJECT SPECIFICATIONS
<ID>.ENVIRON := <ID LIST(1)>.ENVIRON

END

The syntax rule describes a subtree of the parse tree
rooted at <ID LIST(1)> and having two sons <ID> and
<ID LIST(2)>. The semantic rule explicitly assigns to
the ENVIRON attribute of <ID> the ENVIRON attribute of
the root of this subtree. Without qualifiers on
<IE LIST> such a semantic rule would be ambiguous since
<ID ulST>.ENVIRON could refer to the ENVIRON attribute
of either the subtree root or the second son.

(c) The qualifier numbering within a language rule is up to
the user. The only restriction is that a specific
qualified grammar variable may appear at most once in agiven syntax rule. Thus the following is invalid

<A(I)> -=<A(1)> "ELSE"

since the qualified grammar variable <A(1)> appears
twice in the same syntax rule. The following two exam-
ples are valid

<A> : := <A> "ELSE"

<B(1)> ::= <B(2)> <A(1)> <A(2)>

In the first example, since <A> is not qualified it may
appear more than once in the syntax rule. However it
may not appear as part of an attributed variable in a
semantic rule since such an attributed variable would
result in an ambiguous reference. In the second exam-
ple, each qualified grammar variable is correctly used
at most once in the syntax rule.

(d) The length of a grammar attribute is the number of
characters in the attribute name. The length of an
attributed variable is the length of its grammar vari-
able part (Section 5.2.1.1) plus the length of its
grammar attribute part plus one. For example, the
grammar attribute ENVIRON has length 7, and the attri-
buted variable (ID LIST(12)>.ENVIRON has length 15.
The current SAM/SAL implementation restricts the length
of any grammar attribute and attributed variable to be
no more than 30.

Language Specifications 31

(e) A Procedure Rule or Function Reference may apply to any

procedure or function declared either in the Standard
Environment (see Appendix B) or in the Other Declara-
tions section (see Section 4.4).

II

tI

CHAPTER 6

Procedural Specifications

This final specification section of a SAL program
allows the user to perform any post semantic computations to

augment the output listing file of the semantic evaluator
phase of SAM/SAL. Any computations in this section will

automatically occur after all semantic rules have been com-
puted, and after the symbol table, callgraph tables, and
flowgraph tables have been dumped to the output tables file.
Thus any computations occuring in this section cannot alter
the outpat tables file. The computations may (and indeed
are intended to) add to the output listing file. All global
variables provided by the Standard Environment or declared
by the user in the Other Declarations parL (4.4) are avail-
able for use here. This specification section was added to

the SAL language to provide the user with some post semantic
control. It is expected that in most SAL programs there
will no code in this specification section. The syntax for

the procedural specifications section is

<PROCEDURAL PART> ::=
"PROCEDURE" "SPECIFICATIONS"

<OTHER DECLARATIONS>
"BEGIN"

<<STATEMENT>>
f "," <<STATEMENT>>

"END"
"END" "PROCEDURE" "SPECIFICATIONS"

where <<STATEMENT>> has the usual PASCAL syntax and seman-
tics, and in particular may be empty. Examples of a pro-
cedural specification are

(1) PROCEDURE SPECIFICATIONS # EXAMPLE OF AN EMPTY
BEGIN # PROCEDURE SPECIFICATION
END #

END PROCEDURE SPECIFICATIONS #

and

32 Procedural Specifications

Procedural Specifications 33

(2) PROCEDURE SPECIFICATIONS

WRITE THE COMPLETED SYMBOL TABLE TO
THE STANDARD FILE "OUTPUT".

*VAR

SYM :SYMBOL;
BEGIN

WRITELN(" DUMP OF SYMBOL TABLE");
FOR SYM:1l TO NUMSYM DO

BEGIN
WRITE(' ":"5,SYM:5," ":5-

WRITESYM(OUTPUT, SYM) ;
v1RITELN

END
'END

END~ PROCEDURE SPECIFICATIONS

mom

r1

References

[Bochm 76] Bochmann, Gregor V. "Seriantic F-aluation from
Left to Right", CACM, Vol. 19, No. 2. (Feb.,
1976), pp. 55-62.

[Clemml 79] Clemm, G. M. "CLEMSW User's Manual", Tech.
Rep. CU-CS-167-79, Dept. of Computer Science,
Univ. of Colorado at Boulder, Boulder, Colo.,
November, 1979.

[Clemm2 -9] Clemm, G. M. "FSCAN Report and User's Manual",
Tech. Rep. CU-CS-166-79, Dept. of Computer
Science, Univ. of Colorado at Boulder,
Boulder, Colo., November, 1979.

[Fosd 76] Fosdick, L. D., and Osterweil L. J. "Data Flow
Analysis In Software Reliability", Computing
Surveys, Vol. 8, No. 3, (Sept., 1976), pp.
305-330.

[Jazay 75] Jazayeri, M., and Walter, K. G. "Alternating
Semantic Evaluator", Procedings from ACM
Annual Conference 1975, (Oct., 19757, pp.
230-234.

[Jensen 74] Jensen, K., and Wirth N. PASCAL: User Manual
and Report, 2nd ed., Springer-Verlag, New York
(1974 -

[Kasten 78] Kastens, U. "Ordered Attribute Grammars",
Technical Report, Institut fur Informatik II,
Universitat Karlsruhe, Bericht Nr. 7/78.

[Kenned 76] Kennedy, K., and Warren, S. K. "Automatic Gen-
eration of Efficient Evaluators for Attribute
Grammars", Procedings on 3rd Symposium on
Principles 6),
pp. 32-49.

[Knuth 68] Knuth, D. E. "Semantics of Context-Free
Languages", Mathematical Systems Theor Vol.
2, No. 2, (June, 1968), pp. 127-145.

34 References

APPENDIX A

Using SAM/SAL on the CU CDC Cyber

Each of the phases listed below uses special files
built for the SAM/SAL system. The names of these files, and
the CU projects and CCID's under which they are accessed may
change. The file names, projects, and CCID's given below
are valid as of January, 1981.

A.1 Compiling a SAL Program, S

Nine output files are generated by the SAL compiler.
Of these, six have SAM/SAL system names which are not to be
altered by the user, and thus do not explicitly appear in
the compile command. To compile a SAL source program, S:

GET, SAL=SALTRAN/PAPM,J973.

SAL, S, SALIST, SCANNER, GRCLEM.

The single input file is:

S User specified source file to be compiled.

The nine output files are:

SALIST Listing file. This includes a paginated copy of
the original source text with line numbers, error
diagnostics, cross-reference information, and
program statistics.

SCANNER Scanner file. This file contains the default or
user-defined scanner specifications to be used by
FSCAN.

GRCLEM Grammar file. This file contains all sytax rules
in the form expected by the tree-builder phase of
parse generation.

DECLF Declarations file. This file contains all
declarations as specified in 4.4.

EVALF Command Evaluation file. This file contains all
semantic rules translated into PASCAL statements.

DGRAPHF Dependency-Graph file. This fii contains the
sequence of PASCAL commands generated by SAL to
build the dependency graph for any program in the

Appendix A 35

7 36 Appendix A

specified language for analysis by the semantic
evaluator.

CNSTMOD Constants file. This file contains all constants
which govern the size of the Standard Environment
data structures.

PTCLF Productions Table file. This filc contains PAS-
CAL code for creation of the productions table in
the semantic evaluator.

SALBODY Body file. This file contains PASCAL code as
specified in Chapter 6.

A.2 Generating the Evaluators

A.2.1 Parser Generation

To automatically generate a parser for the language
specified by S, the two output files SCA1NER and GRCLEM from
SAL are needed. Parse generation proceeds over several
phases.

Phase 1. Process Scanner Specifications.

GET, FSCAN/PAPMJ973.
FSCAN, SCANNER, SCNLST, TBLl,ERRSCN.

The single input file is:

SCANNER Output from SAL compiler.

The three output files are:

SCNLST Scanner listing file.

TBLI Fortran tables produced by FSCAN.

ERRSCN Error file.

If ERRSCN is empty, then you can proceed to the second phase
of parse generation.

Phase 2. Process Scanner/Grammar Interface.

GET, SALTGB/PAPM,J973.
SALTGB,GRCLEM,TBL1,GRLIST,TBL2,TBL3,ERRTGB.

The two input files are:

Appendix A

GRCLEM Output from SAL compiler.

TBLl Output from FSCAN.

The four output files are:

GRLIST Tree-grammar listing file.

TBL2 Fortran tables produced by SALTGB.

TBL3 Grammar table produced by SALTGB.

ERRTGB Error file.

If ERRTGB is empty, you can proceed to the third phase of
parse gercration.

Phase 3. Create Fortran Grammar Tables.

GET, CLEMSW=CLMSWB/PAPM, J973.
CLEMSW, TBL3, CLMLIST, TBL4.

The single input file is:

TBL3 Output from SALTGB.

The two output files are:

CLMLIST CLEMSW listing file.

TBL4 Fortran table produced by CLEMSW.

If no errors were detected by CLEMSW, you can proceed to the
final phase of parse generation.

Phase 4. Producing the Actual Parser.

To produce the actual parser for the language specified
by S, the Fortran tables produced in the previous phases
need to be compiled and edited into a parse-driver template.
The KCL for this phase is:

REWIND, TBLl, TBL2, TBL4.
FTN, I=TBLl, L=O, B-BIN.
FTN, I=TBL2, LO, B=BIN.
FTN, IMTBL4,L0, B-BIN.
REWIND, BIN.
GET, PRSDRVB/PAPM,J973.
LIBEDIT, P=PRSDRVB,L=O,B=BIN, I-O,N-PARSE.

The three input files are:

- .MI

38 Appendix A

TBLl Output from FSCAN.

TBL2 Output from SALTGB.

TBL4 Output from CLEMSW.

The single output file is:

PARSE Object file for the parser for the language
specified by S.

A.2.2 Semantic Evaluator Generation

To build a semantic evaluator for S:

GET, CENEVAL/PAPM, J973.
PASCAL, ('ENEVAL, GENLIST, SMEVAL.

The six (implicit) input files are:

EVALF, DGRAPHF, PTCLF, SALBODY, DECLF, and CNSTMOD
Output files from the SAL compiler.

The two output files are:

GENLIST PASCAL listing of the semantic evaluator.

SMEVAL Object file for the semantic evaluator for the
language specified by S.

A.3 Using the Evaluators

This section describes how to use the parser and seman-
tic evaluator created in Section A.2.

A.3.1 Using the Parser

To parse a program U in the language specified by S:

PARSE, U, ULIST, UTBL, UERR.

The two input files are:

PARSE The parser generated in A.2.1.

U A sample program in the language specified by S.

The three output files are:

-lp

Appendix A 39

ULIST A listing of file U with token numbers.

UTBL File containing symbol table and parse-tree for
U.

UERR Listing of syntax errors in U.

A.3.2 Using the Semantic Evaluator

To perform the semantic evaluation of program U as
specified by S:

GET, FTNSETB/PAPM, J97 3.
LOAD, FTNSETB.
SMEVA., UTBL, SAMLIST, SAMTBL.

The two i:±pit files are:

SMEVAL The semantic evaluator generated in A.2.2.

UTBL The table-file generated by the parser for pro-
gram U.

The two output files are:

SAMLIST Listing file containing (a) any system errors
detected by the semantic ivaluator, (b) any out-
put requests issued by the user in S, and (c)
program statistics for U.

SAMTBL This file contains the symbol table, call graph,
and flowgraphs for program U.

A.4 Fancy Display

The current SAM/SAL system has a post phase which
allows the user to get a readable listing of the tables file
from the semantic evaluator. To invoke this display tool:

GET, SALPOST/PAPM, J973.
SALPOST, SAMTBL, PLIST.

The single input file is:

SAMTBL Output from semantic evaluator.

The single output file is:

PLIST User-readable listing of input.

APPENDIX B

The Standard Environment

This appendix lists the Standard Environment TYPEs,
PROCEDUREs and FUNCTIONs for the SAM/SAL system.

B.l Standard Types

B.1.1 Set types

SETS SET descriptor type

UNPSET Unpacked representation of a set

B.1.2 Symbol Types

SYMBOL Symbol descriptor type

OBJECT Synonym for SYMBOL

SYMREP Type for the 7haracter string of
a symbol

SYMLNG Subrange type for the length value of
a symbol

UNPSTR Unpacked type for SYMREP

B.1.3 Symbol Attribute Types

ATTRIBUTE Attribute-name selector type

ATTBLOCK Attribute-block descriptor

B.1.4 Object Class Types

OBJCTCLASS Object-Class name type

40 Appendix B

Appendix B 41

B.1.5 Packet Types

PACKET Flowgraph node, expression-tree node,
use-table node descriptor type

ACTION Scalar type of user-defined actions

FGNODE Synonym for PACKEI

EXPNODE Synonym for PACKET

B.l.6 Parameter Building Types

FPRMPTR Formal parameter node descriptor

B.1.7 Callgraph Types

CALLPTR Callgraph node descriptor type

B.l.8 Parse-Tree Types

PARSENODE Parse-tree node descriptor type

B.l.9 Other Types

These include all other primitive types provided by the
PASCAL Report ([Jensen 741). Specifically

INTEGER

REAL

CHAR

BOOLEAN

B.2 Standard Procedures/Functions

B.2.1 Set Routines

FUNCTION NEWSET:SETS;

RETURNS A NEW (EMPTY) SET FROM THE SET-POOL.

- . . --

42 Appendix B

FUNCTION NULLSET:SETS;

SAME AS NEWSET

PROCEDURE RETURNSET(VAR S:SETS);

RETURNS A SET TO THE SET-POOL.

FUNCTION ISEMPTY(S:SETS):BOOLEAN;

RETURNS TRUE <=> SET S IS EMPTY.

PROCEDURE UNIONP(SI,S2:SETS; VAR RESULT:SETS);

RETURNS A NEW SET RESULT WHOSE VALUE IS THE
UNION OF SETS S1 AND S2.

FUNCTION UNION(SI,S2:SETS):SETS;

SAME AS UNIONP EXCEPT THIS IS A FUNCTION, AND
HENCE HAS NO CONTROL OF GARBAGE COLLECTING ON
USED SETS.

PROCEDURE INTERSECTP(SIS2:SETS; VAR RESULT:SETS);

RETURNS A NEW SET RESULT WHOSE VALUE IS THE
INTERSECTION OF SETS Sl AND S2.

FUNCTION INTERSECT(SI,S2:SETS):SETS;

SAME AS INTERSECTP EXCEPT THIS IS A FUNCTION,
AND HENCE HAS NO CONTROL OF GARBAGE COLLECTING
ON UNUSED SETS.

-*) --

Appendix B 43

PROCEDURE MINUSP(S1,S2:SETS; VAR RESULT:SETS);

RETURNS A NEW SET RESULT WHOSE VALUE IS THE
SET-DIFFERENCE OF SETS Si AND S2.

FUNCTION MINUS(Sl,S2:SETS):SETS;

AME AS MINUSP EXCEPT THIS IS A FUNCTION, AND
HENCE HAS NO CONTROL OF GARBAGE COLLECTING ON
UNUSED SETS.

PROCFnURE ASSIGNSET(S:SETS; VAR RESULT:SETS);
(ft

RETURNS A NEW SET RESULT WHOSE VALUE IS SET
S. (CREATES A COPY OF S).

PROCEDURE SETINSERT(ELEMENT:INTEGER; S:SETS);

INSERTS ELEMENT INTO SET S.

FUNCTION ISMEMBER(ELEMENT:INTEGER; S:SETS):BOOLEAN;

RETURNS TRUE <=> ELEMENT IS IN SET S.

FUNCTION ISSUBSET(SI,S2:SETS):BOOLEAN;(*t

RETURNS TRUE <=> S1 IS A SUBSET OF S2.

FUNCTION ISEQUAL(Si,S2:SETS):BOOLEAN;(ft

RETURNS TRUE <=> SET Si AND SET S2 CON-
rAIN THE SAME ELEMENTS.

.-. . .. t
o

.

44 Appendix B

PROCEDURE UNPACKSET(S:SETS: VAR UNP:UNPSET);

uNPACK SET S INTO ARRAY UNP. THE ZEROETH
ELEMENT OF UNP IS THE NUMBER, N, OF ELEMENTS
IN S. THE NEXT N ELEMENTS IN UNP ARE THE
ELEMENT VALUES OF S.

PROCEDURE WRITESET(VAR F:TEXT;S:SETS; IND:INTEGER;
VAR NUM:INTEGER):

WRITE SET S TO FILE F, USING NO MORE THAN
130 CHARACTERS PER LINE. START EACH NEW LINE
WITH AN INDENTATION OF IND (IF IND>O) ELSE
WITH AN INDENTATION OF 5. ALSO, IF IND=O
THEN PRECEED FIRST LINE WITH NUMBER OF OBJECTS
IN THE SET. RETURN THE NUMBER OF OBJECTS IN
THE SET IN THE OUTPUT PARAMETER NUM.

B.2.2 Symbol Routines

PROCEDURE SETSYMMAX(SYM:SYMBOL; MAXATTR:INTEGER);

SET MAXIMUM ATTRIBUTES ALLOWED BY SYM TO
MAXATTR.

FUNCTION GETSYMMAX(SYM:SYMBOL) :INTEGER;

RETURNS MAXIMUM NUMBER OF ATTRIBUTES FOR SYMBOL
SYM.

PROCEDURE SETSYMOBJ(SYM :SYMBOL; OBJC :OBJCTCLASS);

SET OBJECT-CLASS FOR SYMBOL SYM TO BE OBJC.

FUNCTION GETSYMOBJ(SYM:SYMBOL) :INTEGER:

RETURN OBJECT-CLASS FOR SYMBOL SYM.
(NOTE - RESULT IS INTEGER SINCE OBJCTCLASS
CANNOT HAVE A VALUE OF ZERO.)

e-I I~ ~ . .. I-

Appendix B 45

PROCEDURE SETSYMAUX(SYM:SYMBOL;AUX: INTEGER;VAL: INTEGER);

SET AUXILLARY ATTRIBUTE AUX OF SYMBOL SYM
TO VAL.

FUNCTION GETSYMAUX(SYM:SYMBOL;AUX. INTEGE' :INTEGER;

GET AUXILLARY ATTRIBUTE AUX OF SYMBOL SYM.

FUNCTION HASH(VAR STR:SYMREP; LEN:SYMLNG;
VAR WASTHERE:BOOLEAN) :SYMBOL;

HASH STRING STR OF LENGTH LEN. RETURN SYMBOL
POINTER FOR STRING. IF STRING ALREADY IN SYMBOL
TABLE RETURN ITS PREDEFINED HASHED VALUE AND
SET WASTHERE TO TRUE, OTHERWISE CREATE AND
RETURN A NEW SYMBOL POINTER AND SET WASTHERE
TO FALSE.

PROCEDURE GETSTRING(SYM:SYMBOL; VAR STR:SYMREP;
VAR LEN: SYMLNG);

GET STRING VALUE <STR, LEN> ASSOCIATED WITH
SYMBOL SYM.

PROCEDURE WRITESYM(VAR F:TEXT; SYM:SYMBOL);

WRITE SYMBOL SYM TO FILE F.

PROCEDURE LISTSYMSET(VAR F:TEXT; S:SETS: INDENT:INTEGER);

WRITE THE SET OF SYMBOLS IN SET S TO FILE F
USING NO MORE THAN 130 CHARACTERS PER LINE.
START EACH NEW LINE WITH AN INDENTATION OF
INDENT SPACES.

46 Appendix B

B.2.3 Symbol Attribute Routines

PROCEDURE SETSYMATT(SYM:SYMBOL, ATT:ATTBLOCK);

SET ATTRIBUTE-FIELD OF SYMBOL SYM TO ATT.

FUNCTION GETSY4ATT(SYM:SYMBOL):ATTBLOCK;

GET ATTRIBUTE-FIELD OF SYMBOL SYM.

FUNCTION NEWATTBLCK: ATTBLOCK;

RETURNS A NEW ATTRIBUTE-BLOCK POINTER AND UP-
DATES TOTAL NUMBER OF ALLOCATED POINTERS.

PROCEDURE SETATT(ATT:ATTRIBUTE; SYM:SYMBOL; VAL:INTEGER);

IF SYMBOL SYM HAS ACCES TO ATTRIBUTE ATT

THEN SET ATTRIBUTE ATT OF SYM TO VAL, ELSE
REPORT ERROR.

FUNCTION GETATT(ATT:ATTRIBUTE; SYM:SYMBOL):INTEGER;

GET ATTRIBUTE ATT OF SYMBOL SYM PROVIDED
SYM HAS ACCESS TO THIS ATTRIBUTE, ELSE REPORT
ERROR.

B.2.4 Object-Class Routines

FUNCTION GETOBJSET(OBJCL:OBJCTCLASS):SETS;

GET THE SET OF OBJECTS ASSOCIATED WITH OBJECT
CLASS OBJCL.

PROCEDURE OBJCLDEBUG(VAR F:TEXT);

DUMP ALL VALID OBJECT-CLASSES (INCLUDING THEIR
OBJECTS) TO FILE F.

, __ , .. -- 9'_.

Appendix B 47

PROCEDURE SETMAXATT(OBJCL :OBJCTCLASS; VAL: INTEGER);

SET MAXIMUM NUMBER OF ATTRIBUTES FOR OBJECT-
CLASS OBJCL TO VAL.

FUNCTION GETMAXATT(OBJCL:OBJCTCLASS) :INT!CER;

RETURN MAXIMUM NUMBER OF ATTRIBUTES FOR
OBJECT-CLASS OBJCL.

PROCEDURE INCLUDE(OBJ:OBJECT; OBJCL:OBJCTCLASS);

INCLUDE OBJECT OBJ INTO OBJECT-CLASS OBJCL.

FUNCTION INCLASS(OBJ:OBJECT; OBJCL:OBJCTCLASS): BOOLEAN;

RETURNS TRUE <=> OBJECT OBJ IS IN OBJECT-
CLASS OBJCL.

B.2.5 Packet Routines

PROCEDURE SETACTION(ACTN:ACTION; P:PACKET; S:SETS);

SET SPECIFIED ACTION OF PACKET P TO BE SET S.

FUNCTION GETACTION(ACTN:ACTION; P: PACKET):SETS;

GET ACTION ACTN FROM PACKET P.

B.2.5.1 Use-Table Routines

PROCEDURE SETPCKPLST(P:PACKET; VAL: INTEGER);

SET PARAM-LIST OF PACKET P TO VAL.

FUNCT ION GETPCKPLST(P:PACKET) : INTEGER;

GET PARAM-LIST OF PACKET P.

)3

48 Appendix B

PROCEDURE SETPCKNAME (P :PACKET: VAL: SYMBOL) ;

SET REFERENCED SUBPROG OF PACKET P TO VAL.

FUNCTION GETPCKNAME(P:PACKET) :SYMBOL;

GET REFERENCED SUBPROG OF PACKET P.

PROCEDURE SETPCKEDGE (P:PACKET; VAL:PACKET);

SET USE-EDGE OF PACKET P TO VAL.

*P)
FUNCTION GETPCKEDGE (P :PACKET) : PACKET;

GET USE-EDGE OF PACKET P.

PROCEDURE SETPCKNPRM(P:PACKET VAL: INTEGER);

SET NUMBER OF ACTUAL PARAMS OF PACKET P TO
VAL.

FUNCTION GETPCKNPRM(P:PACKET) : INTEGER:

GET NUMBER OF ACTUAL PARAMS OF PACKET P.

PROCEDURE SETPCKREF (P :PACKET; VAL: INTEGER) ;

SET CODE-REFERENCE OF PACKET P TO VAL.

FUNCTION GETPCKREF(P :PACKET) :INTEGER;

GET CODE-REFERENCE OF PACKET P.

FUNCTION NEWPACKET: PACKET;

RETURN A NEW PACKET FROM THE PACKET-POOL.

Appendix B 49

B.2.5.2 Flowgraph Routines

FUNCTION NEWFGNNODE: FGNODE;

RETURN A NEW FLOWGRAPH NODE FRO1 PACKET POOL.

PROCEDURE SETFGNTYP(F:FGNODE: VAL: INTEGER);

SET TYPE OF FLOWGRAPH NODE F TO VAL.

FUNCTION GETFGNTYP(F:FGNODE) :INTEGER;

'3ET TYPE OF FLOWGRAPH NODE F.

PROCEDURE SETFGNEXP(F:FGNODE; E :PACKET);

SET EXPRESSION TREE ATTRIBUTE OF FLOWGRAPH NODE
F TO E.

FUNCTION GETFGNEXP(F:FGNODE) :PACKET;

GET EXPRESSION TREE FOR FLOWGRAPH NODE F.

PROCEDURE SETFGNNSON(F:FGNODE; VAL:INTEGER);

SET NUMBER OF SON-EDGES OF FLOWGRAPH NODE F
TO VAL.

FUNCTION GETFGNNSON(F:FGNODE):INTEGER:

GET NUMBER OF SON-EDGES FOR FLOWGRAPH NODE F.

PROCEDURE SETFGNNPAR(F:FGNODE: VAL:INTEGER);

SET NUMBER OF PARENT-EDGES OF FLOWORAPH NODE F
TO VAL.

50 Appendix B

FUNCTION GETFGNtIPAR(F:FGNODE) :INTEGER;

GET NUMBER OF PARENT-EDGES FOR FLOWGRAPH NODE F.

PROCEDURE SETFGNSON(F:FGNODE; VAL: SETS);

SET SON-EDGES OF FLOWGRAPH NODE F TO VAL.

FUNCTION GETFGNSON(F:FGNODE) :SETS;

GET SON-EDGES FOR FLOWGRAPH NODE F.

PROCEDURE SETFGNPAR(F:FGNODE: VAL: SETS);

SET PARENT-EDGES OF FLOWGRAPH NODE F To VAL.

FUNCTION GETFGNPAR(F:FGNODE) :SETS;

GET PARENT-EDGES FOR FLOWGRAPq1 NODE F.

PROCEDURE NNEDGE(FROMNODE,TONODE:FGNODE);

CREATE A FLOWGRAPH EDGE FROM NODE FROMNODE
TO NODE TONODE.

PROCEDURE NSEDGE (FROMNODE:FGNODE; TOSET: SETS).

CREATE A FLOWGRAPH EDGE FROM NODE FROMNODE
TO EVERY NODE IN SET TOSET.

PROCEDURE SNEDGE (FRONSET :SETS; TONODE:FGNODE);

CREATE A FLOWGRAPH EDGE FROM EVERY NODE IN SET
FRO(4SET TO NODE TONODE.

Appendix B 51

PROCEDURE SSEDGE(FROMSET,TOSET:SETS);

CREATE A FLOWGRAPH EDGE FROM EVERY NODE IN SET
FROMSET TO EVERY NODE IN SET TOSET.

B.2.5.3 Expression-Tree Routines

FUNCTION NEWEXPNODE :EXPNODE;

RETURN A NEW EXPRESSION-TREE NODE FROM THE
PACKET POOL.

PROCEDURE SETEXPTYP(E :EXPNODE; TYP: INTEGER);

SET TYPE OF EXPRESSION-TREE NODE E TO TYP.

FUNCTION GETEXPTYP(E:EXPNODE) :INTEGER;

GET TYPE OF EXPRESSION-TREE NODE E.

PROCEDURE SETEXPSON(I: INTEGER; E :EXPNODE; VAL: INTEGER) ;

SET THE ITH SON OF EXPRESSION-TREE NODE E TO
VAL.

FUNCTION GETEXPSON(I :INTEGER: E :EXPNODE) :INTEGER

GET THE ITH SON OF EXPRESSION-TREE NODE E.

PROCEDURE SETEXPUSE(E :EXPNODE; VAL: INTEGER);

SET USE-LINK FIELD OF EXPRESSION-TREE NODE E

TO VAL.

FUNCTION GETEXPUSE(E:EXPNODE) : INTEGER;

GET USE-LINK OF EXPRESSION-TREE NODE E.

W 7 -

52 Appendix B

PROCEDURE SETEXPOBJ(E:EXPNODE; VAL: INTEGER);

SET OBJECT FIELD OF EXPRESSION-TREE NODE E TOr VAL.

FUNCTION GETEXPOBJ(E:EXPNODE) :INTEGThR;

GET OBJECT OF EXPRESSION-TREE NODE E.

B.2.6 Parameter Building Routines

FUNCTION NEWFPNODE: FPRMPTR;

RETURN NEW FORMAL-PARAMETER NODE.

PROCEDURE SETFPUSE(FP:FPRMPTR; L: INTEGER);

SET USE-LINK OF PARAMETER NODE FP TO L.

FUNCTION GETFPUSE(FP:FPRMPTR) :INTEGER;

GET USE-LINK OF PARAMETER NODE FP.

PROCEDURE SETFPLINK(FP:FPRMPTR; L: INTEGER);

SET FP-LINK OF PARAMETER NODE FP TO L.

FUNCTION GETFPLINK(FP:FPRNPTR) :INTEGER:

GET FP-LINK OF PARAMETER NODE FP.

PROCEDURE SETFPSET(FP:FPRMPTR; L:SETS);

SET GLOBAL SET OF PARAMETER NODE FP TO L.

Appendix B 53

FUNCTION GETFPSET(FP:FPRMPTR) :SETS;

GET GLOBAL SET OF PARAMETER NODE FP.

B.2.7 CalIlqraph Routines

FUNCTION NEWICGRNODE:CALLPTRr

RETURN A NEW CALLGRAPH POINTER

PROCEDURE SETCGRNAME(C:CALLPTR, VAL:SYMBOL);-

* 3ET NAME-FIELD OF CALLGRAPH NODE C TO VAL.

FUNCTION GETCGRNAME(C:CALLPTR) :SYMBOLT-

GET NAME-FIELD OF CALLGRAPH NODE C.

PROCEDURE SETCGRNMFP(C:CALLPTR; VAL: IY'rEGER);

SET NUM-PARAM-FIELD OF CALLORAPH NODE C TO
VAL.

FUNCTION GETCGRNMFP(C:CALLPTR):INTEGER;

GET NTJM-PARAM-FIELD OF CALLORAPH NODE C.

* PROCEDURE SETCGRFPL(C:CALLPTR; VAL: INTEGER);

SET FP-FIELD OF CALLGRAPH NODE C TO VAL.

FUNCTION GETCGRFPL(C:CALLPTR) :INTEGER;

GET PP-FIELD OF CALLGRAPH NODE C.

54 Appendix B

PROCEDURE SETCGREDGE(C:CALLPTR; VAL:PACKET) ;

SET EDGE-FIELD OF CALLGRAPH NODE C TO VAL.

FUNCTION GETCGREDGE(C:CALLPTR) :PACKET;

GET EDGE-FIELD OF CALLGRAPH NODE C.

PROCEDURE SETCGRNTRY(C:CALLPTR; VAL:PACKET);

SET ENTRY-FIELD OF CALALGRAPH NODE C TO VAL.

FUNCTION GETCGRNTRY(C:CALLPTR) :PACKET;

GET ENTRY-FIELD OF CALLGRAPH NODE C.

PROCEDURE SETCGREXIT(CtCALLPTR: VALPACKET);

SET EXIT-FIELD OF CALLORAPH NODE C TO VAL.

FUNCTION GETCGREXIT(C:CALLPTR) :PACKET;

GET EXIT-FIELD OF CALLGRAPH NODE C.

PROCEDURE SETMAINCALL(VAL:CALLPTR);

SET MAIN PROGRAM INDICATOR TO BE CALLORAPH
NODE C.

FUNCTION CALLEDGE(C:CALLPTR; OBJ:SYMBOL:
NUMPARAM:INTEGER):PACKET;

SEARCH USE-EDGES OF CALLORAPH ENTRY C FOR A
PACKET WITH NAME-FIELD OBJ, AND RETURN PACKET.
IF PACKET DOESNT EXIST, THEN CREATE A PACKET
WITH NAME OBJ.

Appendix B 55

B.2.8 Parse-Tree Routines

FUNCTION GETPRSATT(PND: PARSENODE ;SEL: PRSSELECT) :INTEGER;

GET SELECTED FIELD FROM PARSE-TREE NODE #PND#.

PROCEDURE SETPRSATT(PND: PARSENODE; SEL: PRSSELECT:
VAL: INTEGER);

SETS THE SELECTED FIELD OF PARSE-TREE NODE
"PND" TO VAL.

F*)

PROC EDURE TREEDUMP(VAR F:TEXT);

DU P OF PARSE TREE IN TREE REPRESENTATION.

B.2.9 Other Routines

These include all the standard routines provided by the
PASCAL Report ([Jensen 74, Appendix A]).

APPENDIX C

Output Tables Format

C.1 Data Structure Representations

CNAME SYMBOL pointer to name of program-unit.

CEPGE PACKET pointer to first use-table node

- - -in edge-list.
I CENi',Y PACKET pointer to ENTRY flowgraph node
I---------- for this program-unit.
CNUMFP Number of formal parameters for

I---------- program-unit.
CFIRSTFP SET pointer to first formal parameter

node.

Figure C.1 Callgraph Node Structure

JNOBJ I FOBJ I NOBJ is the number of objects in
I I--- I action-class , and FOBJ is a SET
INOBJ I FOBJ I pointer for the first object.

INOBJ I FOBJ I

Figure C.2 Action Packet Structure

I MODE I Parameter-mode indicator (1 => "IN",
I----------I 2 => "OUT", 3 => "IN/OUT").
I LINK I FP-pointer link to next parameter.

Figure C.3 Fp-Node Structure

56 A

Appendix C 57

PACKETS

- ----------------- r- ph- noe- type----ind ---c--tor.-

IFEXPTR I PACKET pointer to expresLsion-tree root
---------- for this node.
IFNSON I Number of sons for this node.

IFFSON I PACKET pointer to first son.

IFNPAR I Number of parents for this node.

IFFPAR I PACKET pointer to first parent.

I ACTIONS

..igure C.4 Flowgraph Node Structure

I ENODETYPE I Expression----tren-type indicator.---

I-----------
I ESO P EpCesspontre todfirtyp soniatr

IESON2 PACKET pointer to second son.

IEUSE I PACKET pointer to link use-table
--------------- I information.
IE01BJ I Symbol pointer to object whose action
-------------- is currently unknown.
I(unused)

I ACTIONS

Figure C.5 Expression-Tree Node Structure

58 Appendix C

UNPARAM Number of parameters in an invocation

I---------- of this program-unit.
UPLIST FP pointer to first actual-parameter

I---------- node.
UNAME SYMBOL pointer to name oi program-unit.

UCODEREF PACKET pointer to first expression-tree

I---------- node for call to this program-unit.
ULINK PACKET pointer to next entry in use-

I---------- table.
(unused) A

I ACTIONS

Figure C.6 Use-Table Node Structure

- - - - - - - - - -- - - - - - - - - - - - - - - - - - -

Appendix C 59

C.2 File Format

Pages 61 and 62 represent the format for the output Tables File.
This file is a text file composed of lines (records). Each line holds
no more than 130 characters. Below is a line-by-line description of
the information on those pages.

Notice that lines 12, 17, 18, 19, 20, 22, 23, 24 and the ends of
lines 13 and 14 describe sets or lists of objects. Such descriptions
are represented by (1) the number, n, of objects in the list, and (2)
a list of the n objects. The list may extend over a line boundary.
After the last object in a given list is printed (within the file),
the line holding that object is terminated.

lire 1 na is the number of user-defined actions.

lincs 2,3 Action names. Each string is exactly 10 characters long
and each begins in column 2 of a new line.

line 4 nt is the number of expression-tree plus flowgraph node

types.

lines 5,6 Node-type names. Each string is exactly 10 characters
long and each begins in column 2 of a new line.

line 7 ns is the number of Symbol Table entries (symbols).

lines 8,9 Symbols. length i is the nu.iber of characters in string i.

att i is the Attribute Table descriptor owned by symboli.

There is exactly one blank between att i and string i .

line 10 Number of callgraph nodes, and callgraph node descriptor
(index) for the main program.

lines 11-32 Describe all information for callgraph node 1.

line 11 Information for callgraph node 1. See Figure C.1.

line 12 Information for callgraph node 1. See Figures C.1 and C.3.

lines 13-15 Describe all use-table information for callgraph node 1.

line 13 Information for use-table node indexed by UNODEill of

callgraph node 1. See Figure C.6.

line 14 Information for use-table node indexed by UNODEIlo of

callgraph node 1. See Figure C.6.

NOTE: The value for ULINK i is UNODE

line 15 Zero. Indicates end-of-use-table information for callgraph
node 1.

lines 16-25 Describe all flowgraph information for flowgraph owned
by callgraph node 1.

17.

60 Appendix C

line 16 Information for flowgraph node indexed by FNODE1 , of

callgraph node 1. See Figure C.4.

line 17 Set of sons for flowgraph node FNODE 1 of callgraph node 1.

line 18 Set of parents for flowgraph noue FNODE1 , of callgraph

node 1.

line 19 Set of objects in Action-Class I for flowgraph node FNODE I

of callgraph node 1.

line 20 Set of objects in Action-Classn (na given in line 1) for

flowgraph node FNODE1 ,1 of callgraph node 1.

lires 21-24 Same as lines 16-20 except for flowgraph node indexed by
FNODEIm* The total number of flowgraph nodes, m, is

indeterminate.

line 25 Zero. Indicates end-of-flowgraph information for callgraph
node 1.

lines 26-32 Describe all expression-tree information for callgraph
node 1.

line 26 Information for expression-tree node indexed by ENODE 1 1

of callgraph node 1. See Fgjure C.5.

lines 27,28 Action sets (format as in lines 19, 20) for expression-tree
node ENODE I of callgraph node 1.

lines 29-31 Same as lines 26-28 except for expression-tree node ENODEIlk

of callgraph node 1. The total number of expression-tree
nodes, k, is indeterminate.

line 32 Zero. Indicates end-of-expression-tree information for
callgraph node 1.

lines 33-34 Represent same information as lines 11-32 except for
callgraph node 2.

lines 35-36 Represent same information as lines 11-32 except for
callgraph node numcall, where numcall is given in line 10.

. --

Appendix C 61

-a
2. string,

3. stringn
a

4. nt

-t

7. n

8. length, att string,

10. numcall maincall
11. CNAME1-CED-ECENTRY~ CEXIT1
12. CNUMFP 1 !!-D~ to-1,2 .. !iQQ-ElCNUMFP

13. jLOE, 1 AME,41 UCODEREF1 ' I UNPARAM1 ' E ... l 'E ,l,UNPARAM1

14. UN0DE 1 lo N E ,n UCODEREF1l,n -N-PARAM1 ,n -E1,n,l E.,n,UNPARAM lo

15,.0
16. FNODE 11, FODETYPE1 l FEXPTR1ill
17. FNSON 11 IO,,, ... SON,1,FNSON 1

20.OB . _-O-jll~ a-1J,l,n all.. 208Jlg,19 l ,NOBJ 'n
'a

21. MODE,~.i FNODETYPE, FEXP~

22. NON' SONl ~~ ... imNSO

13. LOB,^l2B1,m,n 1 ... g-1-,m,n ,NOBJ

2.Ni mna J na"' .. .-i na NBl min a
25. 0

62 Appendix C

26. ENO00 11 ENODETYPE1, ES011N _____ EH 'lL11,

a a a

29. ENOQ2D1 ENODETYPE1 kSN ES1 1,k ',kESEl,k ~-1,k

30. NOJ,~ OB1,k4~ *.* OBJ1(.~ NOBJ kl

31 NiJl~~na B-lkna I . B1kna' O l~k~fla

32. 0

33 CNME CEDGE, GENTRY2 CEXIT2

34. 0

36. 0

APPENDIX D

SAM/SAL System Sample Program

This appendix presents an example of the various inputs

to and outputs from the SAM/SAL system. The language speci-

fied by this example is TURINGOL, a simple language
described in [Knuth 68].

Section D.2 lists a SAL program specifying TURINGOL. This
listing corresponds to "SAL Program S" in Figure
1.1.

Section D.2 lists a sample TURINGOL program. This program

corresponds to the "User Program U" in Figure

I.I.

Section D.3 lists the "Output Report" in Figure 1.1 for the

sample program of Section D.2.

Section D.4 lists the "Annotated Flowgraphs" file in Figure
1.1 for the sample program of Section D.2. This

file is the Tables File .-hose general format is

given in Section C.2.

Section D.5 presents a user-readable listing of the Tables

File of Section D.4.

Section D.6 gives a graphic illustration of the output for

the sample program of Section D.2.

Note that TURINGOL allows no procedures or functions.

As a result, (1) the output Tables File will always consist
of a callgraph having only a single node; (2) the use-table

list (dependent sons of a callgraph node) will be empty; and

(3) no expression trees are necessary. These properties are

apparent from the listing in Section D.5.

Appendix D 63

64 Appendix D

D0.1 TURINGOL: A SAL Program

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: II 07.31. PAGE I

1 0 PROGRAM TURINGOL;
2 0 S

3 0 3 TURINGOL IS A SAMPLE LANGUAGE SPECIFIED IN:

4 0 8

5 0 # KNUTH. D. E.,"SEMANTICS OF CONTEXT-FREE LANGUAGES", MATHEMATICAL

6 0 S SYSTEMS THEORY, VOL. 2, NO. 2, (JUNE 1968), PP. 127-145.

7 0 #
a 0 * INSTEAD OF TURING-MACHINE DELTA FUNCTIONS, THIS SPECIFICATION

9 0 * PRODUCES AN ANNOTATED FLOWGRAPH.

10 0 S

11 0 # SINCE THIS IMPLEMENTATION CANNOT HANDLE THE EMPTY PRODUCTION,

12 0 * 'HE EMPTY STATEMENT WILL BE OENOTED BY "NULL".

13 0 #
14 0
15 0 PREAMBLE
16 0
17 0 SCANNER SCANTOK:

18 0 SCANTOK -> (SPACES / TOKEN)s SPACES;

19 0 SrACES -> (''/'EOL');

20 0 SCANNER TOKEN:

21 0 TOKEN -> IONT / '3"' STRNG " * / LITERAL / MISC! / MISC2

22 0 END TOKEN;

23 0 IDNT -) CHAR+ z> "IDNTFR"

24 0 STRNG -> CHAR+ => "STRING".

25 0 LITERAL -> . / ","- / '*; " / ":" / C" / "''" 8 "SINGLE"

26 0 CHAR -) "A" / "B" / "C" / "D" / "E" / "F" /

27 0 "0" / "H" / "I" / "J" , , / "L" /

28 0 "M" / "N" / "0" / "P ,"0" / "R" t

29 0 "5" / "T" / "U" / "V" / "W" / "X" /

30 o ..Y" / "Z. ;

31 0 MISCI -> *#?" => "CNSTNT";

32 0 MISC2 -> "aS" => "FLOAT";
33 0 END SCANTOK.

34 0
35 0 END PREAMBLE

=~~p ""I s . .

Appendix D 65

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: 11.07.31. PAGE 2

36 0
37 0 DECLARATIONS
38 0
39 0 OBJECT CLASSES
40 0 ALPHABET: ;
41 0 LABELS :(FN :FONOQE);
42 0
43 0 ACTIONS
44 0 DECLARE, REF :ON ALPHABET;
45 0 USE, DEF :ON LABELS;
46 0
47 0 F .OWGRAPH NODE TYPES
46 0 FNTRYSTMT, EXITSTMT, IFSTMT, EMPTYSTMT,
49 0 GOTOSTMT, MOVESTMT, PRINTSTMT;
50 0
51 0 S PROCEDURES AND FUNCTIONS

66 Appendix D

SALTRAN (VERSION: 02/17/Si) DATE: 81/03/05. TIME: 11.07.31. PAGE 3

52 0
53 0 FUNCTION SETLABEL(L:OBJECT; S:FGNCDE):INTEGER;
54 0 (
55 0 SET FLOWGRAPH NODE FO0R LABEL L TO B~E S.
56 0 a
57 0 BEGIN '>a SETLABEL a)
58 1 SETATT(FN. L. S);
59 1 SETLABEL:sl

60 1 END (x SETLABEL a);

62 0 FUNCTION GETLABEL(L:OSJECT; CONTROL*INTEGER):FGNODE,

63 0 (a
c64 0 GET FLOWGRAPH NODE ASSOCIATED WITH LABEL L.

65 0 a)
66 0 BEGIN (a GETLABEL P)
67 1 GETLABEL:=GETATT(FN, L)
68 1 END (a GETLABEL a);
69 0
70 0 PROCEDURE CHECKVAR(OBJ:OBJECT; TOKEN:INTEGER).
71 0 (w
72 0 REPORT SEMANTIC ERROR IF OBJ HAS NOT BEEN DECLARED
73 0 TO BE IN THE TAPE ALPHABET.
74 0 S)
75 0 BEGIN I* CHECKVAR a
76 1 IF NOT INCLASSCOBJ,ALPHABET) THEN
77 1 BEGIN (w THEN a
78 2 WRITELN;
79 2 WRITELN(" ":10, SEMANTIC ERROR:");
s0 2 WRITE.":"20,"SYMBOL)

81 2 WRITESYM(OUTPUT,OSJ);
82 2 WRITELN(" AT TOKEN ",TOKEN'.)," NOT DECLARED.")
83 2 END I* THEN x)
84 1 END (* CHECKVAR a);
85 0
86 0 PROCEDURE CHECKLABEL(OBJ:OBJECT; TOKEN:INTEGER);
87 0 1*
88 0 REPORT SEMANTIC ERROR IF OBJ HAS NOT BEEN DEFINED
89 0 AS A LABEL.
90 0 a
91 0 BEGIN (a CHECKLABEL a
92 1 IF NOT INCLASS(OBJ,LABELS) THEN
93 1 BEGIN I* THEN a
94 2 INCLUDE(OBJ,LABELS);
95 2 WRITELN;
96 2 WRITELN(" *:10"SEMANTIC ERROR:");
97 2 WRITE(" ":20,"LABEL *)
98 2 WRITESYMOUTPtT,0BJ);
99 2 WRITELN(" AT TOKEN ",TOKEN:1,11 NOT DEFINED.")
100 2 END (a THEN a)
101 1 END (aCHECKLABELa)
102 0
103 0 FUNCTION MAKEMAIN:SYMBOL,
104 0 (a
105 0 CREATE THE SYMBOL "TURINGOL" AND RETURN ITS DESCRIPTOR.
106s 0 a
107 0 VAR
106 0 WASTHERE :BOOLEAN;
109 0 REP :SYMREP;

Appendix D 67

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: 11 07.32. PAGE 4

110 0 STR :UNPSTR;
Ill 0 1 INTEGER;
112 0 BEGIN (* MAKEMAIN S);
113 1 STRE1J:="T".
114 1 STRC2V:="U*';
115 1 STRC332:*R";
116 1 STRC41:m"l";
117 1 STRC51: z*N";
118 1 STREGI: :'G";
119 1 STRE71:="O";
120 1 STRC6J:='L";
121 1 FOR 1:=9 TO MAXCHAR DO
122 1 STRCII:z:"
123 1 PACK(STR1.,REP);
124 1 MAKEMAIN:xHASH(REP,8,WASTMERE)
125 1 END (a MAKEMAIN)
126 0
127 0 END DECLARATIONS

_ W ' - . - ' -. T
,

- ,. : . ..

68 Appendix D

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: 11.07.32. PAGE 5

128 0
129 0 LANGUAGE SPECIFICATIONS
130 0
131 0 GRAMMAR ATTRIBUTES
132 0
133 0 <PROGRAM> t
134 0 ENTRY, EXIT : FGNODE;
135 0 CALLNODE : CALLPTR;
136 0
137 0 <STMT LIST>
138 0 START FGNODE;
139 0 FINISH SET OF FGNODE;
140 0 LABELREF, LABELDEF : INTEGER;
141 0
142 0 <STATEMENT>
143 0 START FGNODE;
144 0 FINISH : SET OF FGNODE;
145 0 LABELREF, LABELOEF : INTEGER;
146 0
147 0 <DIRECTION>
148 0
149 0 <IF PART>
150 0
151 0 <DECLARATION>
152 0
153 0 <IDENTIFIER>
154 0 VALUE SYMBOL;
155 0 TOKEN : INTEGER;
156 0
157 0 <STRING>
158 0 VALUE SYMBOL;
159 0 TOKEN INTEGER;
160 0
161 0 <EMPTY>
162 0
163 0 END GRAMMAR ATTRIBUTES

Appendix 0D6

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: 11.07.32. PAGE 6

164 0
165 0 RULES
166 1
167 1 <PROGRAM> ::= <DECLARATION> '* cSTMT LIST>
168 1 SEMANTICS
169 1
170 1 FLOWGRAPH SPECIFICATIONS
171 1
172 1 <PROGRAM>.ENTRY :gNEWFGNNODE;

173 1 <PROGRAM>.EXIT NEWFGNNOOE;
174 1 <PROGRAM>.CALLNODE := NEWCGRNODE;
175 1 <STMT LIST>.LABELREF :=<STMT LIST.-LABELDEF;
176 1 SETFONTYP(<PROGRAM). ENTRY, ENTRYSTMT);
177 1 SETFGNTYP(<PROGRAM>.EXIT, EXITSTMT);
178 1 MNEDGE(4PROGRAM>.E4TRY, <STMT LIST>.START);
179 1 SNEDGE(<STMT LIST>.FINISH, <PROGRAM>.EXIT);
180 1 SETMAINCALL(<PROGRAM> .CALLNODE);
181 1 SETCGRNAME(<PROGRAM . CALLNODE, MAKEMAIN);
102 1 SETCOREDGE((PROGRAM> .CALLNOOE, 0);
183 1 SETCQRNTRY (<PROGRAM>. CALLNODE, <PROGRAM>. ENTRY);
184 1 SETCOREXIT(<PROGRAM> .CALLNOOE, <PROGRAM) EXIT);
165 1 3ETCGRNMFP(<PROGRAM>.CALLNO0E, 0);
166 1 SETCGRFPL('PROGRAM) .CALLNOOE, 01
187 1
168 1 ACTION SPECIFICATIONS
189 1
190 1 SETACTION(DECLARE, (PROGRAM>. ENTRY, GETOSJSET(ALPHASET))
191 11 END
192 2
193 2 <STMT LIST> ::= <STATEMENT>
194 2 SEMANTICS
195 2
196 2 FLOUGRAPH SPECIFICATIONS
197 2
198 2 <STMT LIST>.LASELDEF :~<STATEMENT>.LASELDEF;
199 2 S3TATEMENT>.LABELREF <STMT LIST>.LABELREF;
200 2 CSTMT LIST>.START a STATEMENT>.START;
201 2 <STMT LIST>.FINISH < STATEMENT>.FINISH
202 2 ENO
203 3
204 3 <STMT LISTC1)> ::a <STMT LIST(2)) ";" <STATEMENT),
205 3 SEMANTICS
206 3
207 3 FLOWGRAPH SPECIFICATIONS
208 3
209 3 <STMT LIST(1)>.LABELDEF := <STMT LIST(2)>.LABELDEF +
210 3 (STATEMENT),.LABELDEF;
211 3 <STMT LIST(2)>.LABELREF :a cSTMT LIST(1)>.LABELREF;
212 3 S3TATEMENT>.LABELREF <STMT LIST(I)>.LABELREF;
213 3 S3TMT LIST(i)>.START a STMT L1ST(2)>.START;
214 3 S3TMT L1ST(U).FINISH :2 (STATEMENT).FINISH;
215 3 SNEOGE(<STMT LIST(2)) .FINISH, <STATEMENT).START)
216 3 END
217 4
210 4 (STATEMENT(1I, ::a <IDENTIFIER> ":" <STATEMENT(2)>
219 4 SEMANTICS

221 4 OBJECT SPECIFICATIONS

7 -

70 Appendix D

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: 11 07.34. PAGE 7

222 4
223 4 INCLUDE(<IDENTIFIER>.VALUE. LABELS)
224 4
225 4 FLOWGRAPH SPECIFICATIONS
226 4
227 4 <STATEMENT(1)>.LABELDEF :SETLABEL(41DENTIFIER>.VALUE,
228 4 <STATEPIENT(2) .START);
229 4 <STATEMENT(2) .LABELREF = STATEMENT(1)> .LASELREF;
230 4 <STATEMENT(1I)>.START !z <STATEMENT(2)>.START;
231 4 <STATEMENT(1)>.FINISH := <STATEMENT(Z).FhISH
232 4
233 4 ACTION SPECIFICATIONS
234 4
235 4 SETACTION(DEF, <STATEMENT(I)>.START, I <IDENTIFIER>.VALUE 1)
236 4 END
237 5
238 5 <STATEMENT>' ::= "E" <STMT LIST> "I"
239 5 SEMANTICS
240 5
241 5 FL,0WGRAPH SPECIFICATIONS
242 5
243 5 'cSTATEMENT>.LABELOEF = STMT LIST>.LABELDEF;
244 5 <STMT LIST>.LABELREF :z <STATEMENT>.LABELREF;
245 5 <STATEMEMT,.START :s STMlT LIST>.START;
246 5 <STATEMENT>.FINISH <sSTMT LIST>.FINISH
247 5 END
248 6
249 6 <STATEMENT(1)> ::s <IF PART> <STRING> "THEN" <STATEMENT(2)>
250 6 SEMANTICS
251 6
252 6 ATTRIBUTE SPECIFICATIONS
253 6
254 6 CHECKVAR<STRING>.VALUE, <STRINO>.TOKEN)
255 6
256 6 FLOWGRAPH SPECIFICATIONS
257 6
258 6 <STATEMENT(I1)>. LABELDEF :: STATEMENTC 2)>. LABELDEF;
259 6 <STATEPIENT(2)>.LASELREF : STATEMENT(1)>. LABELREF;
260 6 <STATEMENT(1)>START :z NEWFGNNOOE;
261 6 <STATEMENT1>.FINISH :a I <STATEMENTC1)>.START I UNION
262 6 <STATEMENT(2)>.FINISH;
263 6 SETFGNTYP(<STATEMENT(1)> .START, IFSTMT),
264 6 NNEDGEU<STATEMENT(1)) START, <STATEMENT(2)>.START)
265 6
266 6 ACTION SPECIFICATIONS
267 6
268 6 SETACTION(REF, c3TATEMENT(1)).START, C <STRING>.VALUE 1)
269 6 END
270 7
271 7 <STATEMENT> ::a <EMPTY>
272 7 SEMANTICS
273 7

* 274 7 FLOWGRAPH SPECIFICATIONS
- ~ 275 7

* 276 7 <STATEMENT>.LABELOEF :a 0;
277 7 -STATEMENT>.START :a NEWFONNODE;
276 7 <STATEMENT>.FINISH ;a C <STATEMENT>.START 1;
279 7 SETFGNTYP(<STATEMENT>.START, EMPTYSTMT)

Appendix D 71

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: 1.07.35 PAGE S

280 7 END
281 a
282 6 <STATEMENT> ::= "GO" "TO" cIDENTIFIER>
263 8 SEMANTICS

k 284 a

285 8 ATTRIBUTE SPECIFICATIONS
286 a
287 8 CHECKLABEL(<IDENTIFIER>.VALUE, <IDENTIFIER>.TOKEN)
288 8
289 8 FLOWGRAPH SPECIFICATIONS
290 8
291 8 <STATEMENT>.LABELDEF := 0;
292 8 <STATEMENT>.START := NEWFGNNODE;
293 a <STATEMENT>.FINISH 1 [;
294 8 SETFGNTYP(<STATEMENT>.START, GOTOSTMT);
295 8 NNEDGE(<STATEMENT>.START,
296 8 GETLABEL(<IDENTIFIER>.VALUE, <STATEfMENT>.LABELREF)
297 8
298 8 ACTION SPECIFICATIONS
299 a

300 8 SETACTION(USE, <STATEMENT>.START, E <IDENTIFIER>.VALUE])
301 8 END
302 9
303 9 <STATEMENT> :: "MOVE" <DIRECTION> "ONE" "SQUARE"
304 9 SEMANTICS
305 9
306 9 FLOWGRAPH SPECIFICATIONS
307 9
308 9 <STATEMENT>.LABELDEF := 0;
309 9 <STATEMENT>.START :s NEWFGNNODE;
310 9 <STATEMENT>.FINISH :2 1 <STATEMENT>.START 3;
311 9 SETFGNTYP(<STATEMENT>.START, MOVESTMT)
312 9 END
313 10
314 10 <STATEMENT> ::= "PRINT" <STRING>
315 10 SEMANTICS
316 10
317 10 ATTRIBUTE SPECIFICATIONS
318 10
319 10 CHECKVAR(<STRING>.VALUE, <STRING>.TOKEN)
320 10
321 10 FLOWGRAPH SPECIFICATIONS
322 10
323 10 <STATEMENT>.LABELDEF := 0;
324 10 <STATEMENT>.START : NEWFGNNODE;
325 10 <STATEMENT>.FINISH (C <STATEMENT>.START 1;
326 10 SETFGNTYP(<STATEMENT>.START, PRINTSTMT)
327 10
328 10 ACTION SPECIFICATIONS
329 10
330 10 SETACTION(REF, cSTATEMENT>.START, t <STRING).VALUE 3)
331 10 END
332 11
333 11 cDIRlCTION> ::a "LEFT"
334 11 SEMANTICS
335 11 END
336 12
337 12 <DIRECTION) ::u "RIGHT"

72 Appendix D

SALTRAN (VERSION: 02/17/61) DATE: 81/03/05. TIME: 11.07.35. PAGE 9

336 12 SEMANTICS
339 12 END
340 13
341 13 tIF PART> ::= "IF" "THE" "TAPE" "SYMBOL" "IS"
342 13 SEMANTICS
343 13 END
344 14

*345 14 <DECLARATION> ::.= "TAPE" "ALPHABET" "IS" <IDENTIFIER>
*346 14 SEMANTICS

347 14
348 14 OBJECT SPECIFICATIONS
349 14
350 14 INCLUDE(<IDENTIFIER>.VALUE, ALPHABET)
351 14 END
352 15
353 15 <DECLARATION(1I> ::= <DECLARATION(2)> "," <IDENTIFIER>
354 15 SEMANTICS
355 15
356 15 OBJECT SPECIFICATIONS
357 15

*358 15 INCLUDE(<IOENTIFIER>.VALUE, ALPHABET)
359 15 END
360 16
361 16 <EMPTY> ::a "NULL"
362 16 SEMANTICS
363 16 END
364 17
365 17
366 17 END RULES
367 0 END LANGUAGE SPECIFICATIONS

Appendix 0 73

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: 11,07.37. PAGE 10

368 0
369 0 PROCEDURE SPECIFICATIONS
370 0
371 0 BEGIN
372 1 END
373 0
374 0 END PROCEDURE SPECIFICATIONS.

74 Appendix D

SALTRAN (VERSION: 02/17/81) DATE: 81/03/0S. TIME: 11.07.37. PAGE 11

CROSS REFERENCE MAP E3U33*UW3S33a3S**gasa. 3 ==

GRAMMAR SYMBOLS RHS LINES

<PROGRAM> 4 133 167
<STMT LIST> 3 137 167 193 204 204 238
<STATEMENT> 4 142 193 204 218 218 238 249 249 271 21

303 314
<DIRECTION> 1 147 303 333 337
<IF PART> 5 149 249 341
<DECLARATION> 4 151 167 345 353 353

<IDENTIFIER> 0 153 218 282 345 353
<STRING> 0 157 249 314
<EMPTY> 1 161 271 361

!j

Appendix D 75

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME: 11 07.37. PAGE 12

GRAMMAR ATTRIBUTES LINES

<PROGRAM>.ENTRY SYNTHESIZED 134 172 176 178 183 190
<PROGRAM>.EXIT SYNTHESIZED 134 173 177 179 184
<PROGRAM>.CALLNODE SYNTHESIZED 135 17~4 180 181 182 183 184 185 186

<STMT LIST>.START SYNTHESIZED 138 178 200 213 213 245
<STMT LIST>.FINISH SYNTHESIZED 139 179 201 214 215 246
<STMT LIST>.LA~cLREF INHERITED 140 175 199 211 211 212 244
<STMT LJST>.LA5ELtEF SYNTHESIZED 140 175 198 209 209 243

<STATEMENT) .START SYNTHESIZED 143 200 215 228 230 230 235 245 260 26
263 264 264 268 277 278 279 292 294 29
300 309 310 311 324 325 326 330

<STATEMENT>.FINISH SYNTHESIZED 144 201 214 231 231 246 261 262 278 29
310 325

'STATEMENT>.LADELREF INHERITED 145 199 212 229 229 244 259 259 296
(STATEMENT> LASELDEF SYNTHESIZED 145 198 210 227 243 258 256 276 291 30

323

'IDENTIFIER>.VALUE SYNTHESIZED 154 223 227 235 267 296 300 350 358
<IDENTIFIER>,TOKEN SYNTHESIZED 155 287

<STRING>.VALUE SYNTHESIZED 15e 254 268 319 330
<STRING'..TCKEN SYNTHESIZED 159 254 319

RESERVED TOKENS

E THEN
GO TO MOVE ONE SQUARE PRINT
LEFT RIGHT IF THE TAPE SYMBOL
Is ALPHABET NULL

76 Appendix D

SALTRAN (VERSION: 02/17/81) DATE: 81/03/05. TIME 11.07.37. PAGE I

mum mu mummm mm m=mm*z m PROGRAM STATISTICS mm m mmmm mm Xsmsm.mm

SYMBOLS 109 (TOTAL SYMBOLS)
SPECIAL SALTRAN SYMBOLS 63
GRAMMAR/ATTRIBUTE SYMBOLS 24
OTHER SYMBOLS 22

HASHING
NUMBER OF CALLS 603
N1,0BER OF PROBES 736
tAXIIUM PROBE 4
AVCRAGE PROBE 1.22

PRODUCTION-TABLE / PRODUCTION-LIST 50 (TOTAL ENTRIES)
PRODUCTION-TABLE 16
PRODUCTION-LIST 34

SYNTAX RULES 16 (TOTAL)

SEMANTIC RULES 67 (TOTAL)
OBJECT-CLASS RULES 3
ATTRIBUTE RULES 3
FLOWGRAPH RULES 56
ACTION RULES 5
OTHER RULES 0

TABLES (PERCENT FULL)
SYMBOL TABLE 13.6
CROSS-REFERENCE TABLE 3.3

TOTAL PRODUCTION SYMBOLS 9 9
TOTAL GRAMMAR ATTRIBUTES w 15
TOTAL RESERVED TOKENS c 22
TOTAL PROGRAM LINES 9 374

MAXIMUM RIGHT-HAND-SIDE HAS 5 TERMINALS AND NONTERMINALS

TRANSLATION TIME : 4.06 SECONDS =) 92.07 LINES/SECOND.

2.

Appendix D 77

D.2 Sample TURINGOL Program'

TREI BUILDING ANALYZER VERSIONu05/13/8O
TIfPE= 11,28.04. DATE= 81/03/05.

II TAPE ALPHABET IS BLANK, EIN, ZERO, POINT;
12 PRINT "POINT";
15 GO TO CARRY;
19 TEST: IF THE TAPE SYMBOL IS "EIN" THEN
28 [PRINT "ZERO"; CARRY: MOVE LEFT ONE 3QUARE; 0O TO TEST];
44 PRINT "EIN";
47 REALIGN: MOVE RIGHT ONE SQUARE;
54 IF THE TAPE SYMBOL IS "ZERO" THEN GO TO REALIGN.

END OF ANALYSIS COMPILE TIME= .7 SECONDS

7--

78 Appendix D

D.3 Output Report for Sample Program

------------------------------ STAT IST ICS ------------------------------

ALLOCATED MEMORY:

BASIC UNIT NO. UNITS WORDS/UNIT TOTAL WORDS

SYMBOL TABLE SYMBOL 32 2 (1) 64

ATTRIBUTE TABLE ENTRY 3 1 (2) 3

rRSE TREE NODE 47 2 94

DEPENDENCY GRAPH NODE 155 2 310

DEPENDENCY GRAPH EDGE 80 1 80

FLOW GRAPH NODE 12 4 (3) 48

EXPRESSION TREE NODE 0 4 (3) 0

CALL GRAPH NODE 1 2 2

PRODUCTION TABLE NUMBER 20 1 20

SET POOL SET 47 10 470

TOTAL WORDS u 1091

(1) INCLUDES 1 WORD(S)/STRING
(2) INCLUDES I ATTRIBUTE(S)/ENTRY
(3) INCLUDES 4 ACTION(S)/NCODE

PROGRAM SIZE:

NUMBER OF PARSE TREE NODES 47
NUMBER OF PROGRAM LINES 9 = 5.22 NODES/LINE
NUMBER OF PROGRAM TOKENS 65 => 0.72 NODES/TOKEN

TIMING (SECONDS):
PARSING PHASE 0.64 => 13.95 LINES/SEC
ATTRIBUTE ANALYSIS PHASE 1.12 a> 8.04 LINES/SEC

0.18 FOR READING TABLES AND INITIALIZING MODULES)
0.09 FOR DEP. GRAPH BUILDING
0.31 FOR DEP. GRAPH EVALUATION
0.54 FOR DUMPING TABLES AND STATS)

TOTAL SAM ANALYSIS TIME 1.76 *> 5.10 LINES/SEC
=> 36.85 TOKENS/SEC

Appendix D 79

D.4 Tables File for Sample Program

4 WRITE OUT ACTION NAMES
DECLARE
REF
USE
DEF

10 WRITE OUT FLOWGRAPH NODE-TYPES
BASE
CONCAT
STRUCT
ENTRY STMT
EXITSTMT
I FS'~iT
EMPTYS"MT
GOTOZC MT
?IOVESTMT
PRI NTSTMT

32 BEGINNING OF SYMBOL TABLE
4 0.EOF
1 0;
1 0.
1 0:
1 0OE
1 0O1
4 0OTHEN
2 0 00
2 0 TO
4 0OMOVE
3 0OONE
6 0 SQUARE
5 0 PRINT
4 0OLEFT
5 0 RIGHT
2 0 IF
3 0OTHE
4 0OTAPE
6 0 SYMBOL
2 0OIs
8 0 ALPHABET
1 0 ,

*4 0 NULL
5 0 BLANK
3 0OCIN
4 0OZERO

*5 0OPOINT
5 3 CARRY
4 2 TEST
7 1 REALIGN
0 0
8 0 TURINOOL
1 1

32 0 2 1 CALLORAPH OVERHEAD FOR CALL-NODE 1
0
0 ENO OF USE TABLE FOR CALL-NODE 1
2 4 0
1 12
0
4 24 25 26 27

0
0
1210
12 101

80 Appendix D

1 2
0
1 27
0
0

11 80 0
1 9
1 12
0
0
1 28

9 9 0
1 8
2 10 11
0
0
0
1 28
8 8 0
1 7
1 9
0
0
1 29
0
7 6 0
2 6 10
1 a
0
1 25
0
1 29

10 10 0
1 9
1 7
0
1 26
0
0
6 10 0

1 5
1 7
0
1 25
0
0
5 9 0
1 3
2 4 6
0
0

0
1 303 6 0

2 1 4
1 5

0
0

4 6 0

Appendix D 81

1 5
1 3
0
0
1 30
0
1 5 0
0
1 3
0

30

0 END OF FLOWGRAPH FOR CALL-NODE 1
O END OF EXPRESSION-TREE FOR CALL-NODE 1

82 Appendix D

D.5 User-Readable Report of Tables File

LISTING OF CALLORAPH INFORMATION: MAINCALL= TURINGOL

NODE EDGES

TURINGOL

tIODE NUM PARAM PARAM MODES

TURINGOL * 0

Appendix D 83

DUMP OF PARTIAL FLOWGRAPH FOR SUBPROGRAM TURINGOL

ENTRY NODE = 2, EXIT NODE a 1

------------ -----------------------------USE-TABLE

-------------------- FLOW-GRAPH --------------------

2 DESCRPT=ENTRYSTMT EXP-TREE= 0
SONS z 12
PARENTS=

DECLARE = BLANK EIN
ZERO POINT

REF = <EMPTY>
USE = <EMPTY>
DEF = <EMPTY>

12 DESCRPT=PRINTSTMT EXP-TREE= 0
SONS z 11
PARENTS= 2

DECLARE a <EMPTY>
REF n POINT
USE a <EMPTY>
DEF x <EMPTY)

11 DESCRPT•GOTOSTMT EXP-TREE= 0
SONS a 9
PARENTS= 12

DECLARE = <EMPTY>
REF a <EMPTY>
USE u CARRY
DEF a <EMPTY>

9 DESCRPT=MOVESTMT EXP-TREEu 0
SONS = 8
PARENTS. 10 11

DECLARE a <EMPTY>
REF = <EMPTY>

DEF z CARRY
8 DESCRPTzGOTOSTMT EXP-TREEu 0

SONS X 7
PARENTS. 9

DECLARE a <EMPTY>
REF a <EMPTY>
USE z TEST
DEF a <EMPTY>

7 DESCRPTwIFSTMT EXP-TREEm 0
SONS a 6 10
PARENTS. S

REF a EIN
USE s <EMPTY>
DEF 2 TEST

10 DESCRPTsPRINTSTMT EXP-TREED 0
SONS * 9
PARENTS. 7

DECLARE a <EMPTY>
REF a ZERO
USE a (EMPTY>
DEF a <EMPTY),

6 DESCRPTmPRINTSTMT EXP-TREE 0
SONS a 5
PARENTS, 7

84 Appendix D

DECLARE = EMPTY>
REF c EIN
USE a <EMPTY>
DEF a EMPTY),

5 DESCRPT=MOVESTMT EXP-TREE= 0
SONS = 3
PARENTS= 4 6

DECLARE = <EMPTY>
REF a EMPTY),
USE m<EMPTY>
DEF aREALIGh

3 DESCRPT=IFSTMT EXP-TREEz 0
SONS X 1 4
FARENTS= 5

DECLARE <EMPTY>
REF =ZERO

USE *<EMPTY>

DEF <EMPTY>
4 DESCRPT=GOTOSTMT EXP-TREEm 0

SONS 2 5
PARENTSm 3

DECLARE a <EMPTY>
REF =<EMPTY>
USE 2 REALIGN

DEF = <EMPTY>

IOESCRPT=EXITSTMT EXP-TREEm 0I
SONS a
PARENTS= 3

DECLARE =<EMPTY>
REF a <EMPTY>
USE at <EMPTY>
DEF c <EMPTY>

----------------------------------- EXPRESSION-TREE INFORMATION ----------

SET-POOL IS 2 PERCENT FULL
0.28 SECONDS

Appendix D08

D.6 Graphic Display of Tables File

2 JENTRY declare
-L-ANKEIN,ZERO,POINT

ITEOVE def
TESTIG

